MEMORANDUM

Date: September 23, 2011

To: Naren Babu, Project Manager, OTIE

Superfund Technical Assessment and Response Team (START) for Region 5

Prepared by: Keely Meadows, START chemist for Region 4

QA/QC Russell Henderson

Concurrence by:

Subject: Data Validation for

Kokomo Dump Kokomo, Indiana

Project TDD No. TNA-01-11-08-0018

Laboratory: Spectrum Analytical, Inc. in Tampa, Florida.

Sample Delivery Group (SDG): 3503862

1.0 INTRODUCTION

The START chemist for Region 5 validated analytical data for 4 soil samples for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs), 5 soil samples for toxicity characteristic leaching procedure (TCLP) VOCs and TCLP SVOCs, 5 soil samples for polychlorinated biphenyls (PCBs), 10 soil samples for Metals, 11 soil samples for TCLP Metals, and 1 water sample for VOCs, SVOCs, PCBs, and Metals. Samples were collected at the Kokomo Dump Site on August 19, 2011. The samples were analyzed under SDG 3503862 by Spectrum Analytical, Inc. of Tampa, Florida, Indiana using U.S. Environmental Protection Agency (U.S. EPA) methods 8260B, 1311/8260B, 8270C, 1311/8270C, 8082, 6010B/7470A/7471A, and 1311/6010B/7470A.

Laboratory data were validated using guidelines set forth in the U.S. EPA Contract Laboratory Program National Functional Guidelines (NFG) for Organic Data Review (EPA-540-R-08-01, June 2008), NFG for Inorganic Data Review (EPA-540-R-10-011, January 2010), and applicable methodologies. The purpose of the chemical data quality evaluation process is to assess the usability of data for the project decision-making process.

Organic data validation consisted of a review of the following QC audits:

- Chain of custody and sample receipt forms review
- Sample preservation and holding time
- Blank results
- Surrogate recoveries
- Matrix spike and Matrix Spike Duplicate (MS/MSD) recovery results
- Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) recovery results

Inorganic data validation consisted of a review of the following QC audits:

- Chain of custody and sample receipt forms review
- Sample preservation and holding time
- Blank results

- Duplicate Sample Results
- LCS recovery results
- MS/MSD recovery results

Section 2.0 of this memorandum discusses the results of organic data validation. Section 3.0 of this memorandum discusses the results of inorganic data validation. Section 4.0 presents an overall assessment of the data. The attachment to this memorandum contains the laboratory reporting forms as well as START's handwritten data qualifications where warranted.

2.0 ORGANIC DATA VALIDATION RESULTS

The results of START's organic data validation are summarized below by QC audit reviewed. The data qualifiers listed below were applied to sample analytical results where warranted (see attachment):

- J The analyte was detected. The reported concentration was considered estimated.
- U The analyte was not detected.
- UJ The analyte was not detected. The reporting limit was considered estimated.

After the START project staff received the data packages, they were inventoried for completeness and then reviewed according to matrix-specific protocols and data quality objectives established for the project.

2.1 SOIL SAMPLES BY METHOD 8260B

2.1.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Soil samples were collected on August 19, 2011 and were received on ice by the laboratory. No discrepancies were noted.

2.1.2 SAMPLE PRESERVATION AND HOLDING TIME

VOC samples were analyzed within holding time criteria. No discrepancies were noted.

2.1.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. Laboratory method blank samples (MB 082511BLK22, 082511MBLK62, and 082611BLK22) were run with this SDG.

Acetone was detected at 76.7 ug/kg and Naphthalene was detected at 154 ug/kg in 082511MBLK62. Therefore, Acetone and Naphthalene were qualified as non-detect and flagged "U" in sample KD-SB-1 16ft-16.5ft, and Acetone was qualified as non-detect and flagged "U" in sample KD-SB-2 11ft-12ft due to blank contamination.

2.1.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds (System Monitoring Compounds). Surrogate spike compounds included Dibromofluoromethane, Toluene-d8, 4-Bromofluorobenzene, and 1,2-Dichloroethane.

No discrepancies were noted.

2.1.5 MS/MSD RECOVERY RESULTS

Data for MS/MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

No MS/MSD samples were requested for this SDG.

2.1.6 LCS/LCSD RECOVERY RESULTS

Data for the LCS/LCSD is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS/LCSD is fortified with the full list of VOCs and analyzed with each batch of samples. The LCS/LCSD accuracy performance is measured by Percent Recovery (%R).

The LCSD recovery for 082511LCS22D was biased low for Ethylbenzene at 77.5%. The LCS recovery for 082511LCS63 was biased high for Vinyl Acetate at 138.0%, while the LCSD relative percent difference (RPD) for Vinyl Acetate was high at 45.4%. The LCSD recovery for 082611LCS21D was biased high for Acetone at 203%. Therefore, Ethylbenzene in samples KD-SB-1 16ft-16.5ft, KD-SB-2 11ft-12ft, KD-SB-6 3ft-4ft, and KD-SB-9 3ft-4ft was qualified as estimated and flagged "J" due to low LCSD recovery. No other action was taken to qualify for the high recovery or RPD since Acetone and Vinyl Acetate were not detected in the sample results.

2.1.7 GENERAL LABORATORY OBSERVATIONS

The laboratory noted that samples KD-SB-1 16ft-16.5ft and KD-SB-2 11ft-12ft were diluted due to the abundance of target and non-target analytes. Therefore, elevated reporting limits are provided.

2.2 TCLP SAMPLES BY METHOD 1311/8260B

2.2.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Soil samples were collected on August 19, 2011 and were received on ice by the laboratory. Sample KD-SB-1 16'-16.5' had the 8-ounce sample jar broken during transit, but since the jar was contained in its own plastic bag, OTIE instructed the laboratory to run the analyses required.

2.2.2 SAMPLE PRESERVATION AND HOLDING TIME

Samples were analyzed within holding time criteria. No discrepancies were noted.

2.2.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. A laboratory method blank sample (TCLPBLK862) was run with this SDG.

No laboratory method blank detects were noted.

2.2.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds (System Monitoring Compounds). Surrogate spike compounds included Dibromofluoromethane, Toluene-d8, 4-Bromofluorobenzene, and 1,2-Dichloroethane.

No discrepancies were noted.

2.2.5 MS/MSD RECOVERY RESULTS

Data for MS/MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

No MS/MSD samples were requested for this SDG.

2.2.6 LCS RECOVERY RESULTS

Data for the LCS is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS is fortified with the full list of VOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

LCS/LCSD recoveries and RPDs were within limits.

2.3 SOIL SAMPLES BY METHOD 8270C

2.3.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Soil samples were collected on August 19, 2011 and were received on ice. Sample KD-SB-1 16'-16.5' had the 8-ounce sample jar broken during transit, but since the jar was contained in its own plastic bag, OTIE instructed the laboratory to run the analyses required.

2.3.2 SAMPLE PRESERVATION AND HOLDING TIME

SVOC samples were analyzed within holding time criteria. No discrepancies were noted.

2.3.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. One laboratory method blank sample (97268MB) was run with this SDG.

No laboratory method blank detects were noted.

2.3.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds. Surrogate spike compounds included 2-Fluorophenol, Phenol-d5, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and Terphenyl-d14.

No discrepancies were noted.

2.3.5 MS/MSD RECOVERY RESULTS

Data for MS/MSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

No MS/MSD samples were requested for this SDG.

2.3.6 LCS RECOVERY RESULTS

Data for the LCS is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS were fortified with the full list of SVOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

The LCS recovery for N-Nitrosodimethylamine was biased low at 73.4% for 97269LCS. Therefore, N-Nitrosodimethylamine was qualified as estimated and flagged "J" in samples KD-SB-1 16ft-16.5ft, KD-SB-2 11ft-12ft, KD-SB-6 3ft-4ft, and KD-SB-9 3ft-4ft.

2.3.7 GENERAL LABORATORY OBSERVATIONS

The laboratory noted that samples KD-SB-1 16ft-16.5ft, KD-SB-2 11ft-12ft, KD-SB-6 3ft-4ft, and KD-SB-9 3ft-4ft were diluted due to matrix interferences. Therefore, elevated reporting limits are provided.

2.4 TCLP SAMPLES BY METHOD 1311/8270C

2.4.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Soil samples were collected on August 19, 2011 and were received on ice. Sample KD-SB-1 16'-16.5' had the 8-ounce sample jar broken during transit, but since the jar was contained in its own plastic bag, OTIE instructed the laboratory to run the analyses required.

2.4.2 SAMPLE PRESERVATION AND HOLDING TIME

The original SVOC samples were analyzed within holding time criteria. However, sample KD-SB-2 11ft-12ftRE1 was prepped outside of holding time. Therefore, sample results for KD-SB-2 11ft-12ftRE1 are qualified as estimated and flagged "J". The original sample, KD-SB-2 11ft-12ft, was extracted within holding time, but due to surrogate failures, the sample was re-extracted.

2.4.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. Laboratory method blank samples (97416MB and 98470MB) were run with this SDG.

No laboratory method blank detects were noted.

2.4.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds. Surrogate spike compounds included 2-Fluorophenol, Phenol-d5, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and Terphenyl-d14.

Sample KD-SB-2 11ft-12ft had biased low recoveries for 2,4,6-Tribromophenol (4.2%), 2-Fluorobiphenyl (31%), 2-Fluorophenol (2.2%), Nitrobenzene-d5 (28%), and Phenol-d5 (2.5%). Therefore, the sample was re-extracted due to low surrogates. Sample results from KD-SB-2 11ft-12ft are rejected due to low surrogate recoveries. Only results from sample KD-SB-2 11ft-12ftRE1 will be used.

2.4.5 MS/MSD RECOVERY RESULTS

Data for MS/MSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

No MS/MSD samples were requested for this SDG.

2.4.6 LCS RECOVERY RESULTS

Data for the LCS is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS were fortified with the full list of SVOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

LCS recoveries were within limits.

2.5 SOIL SAMPLES BY METHOD 8082

2.5.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Soil samples were collected on August 19, 2011 and were received on ice. Sample KD-SB-1 16'-16.5' had the 8-ounce sample jar broken during transit, but since the jar was contained in its own plastic bag, OTIE instructed the laboratory to run the analyses required.

2.5.2 SAMPLE PRESERVATION AND HOLDING TIME

Samples were shipped on ice and were analyzed within holding time criteria. No discrepancies were noted.

2.5.3 BLANK RESULTS

The purpose of laboratory blank analysis is to determine the existence and magnitude of contamination resulting from laboratory activities. A laboratory method blank sample (97264MB) was run with this SDG.

No laboratory method blank detects were noted.

2.5.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds. The surrogate spike compound included Decachlorobiphenyl.

The surrogate was within limits for samples analyzed in this SDG.

2.5.5 MS/MSD RECOVERY RESULTS

Data for MS/MSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

No MS/MSD samples were requested for this analysis.

2.5.6 LCS RECOVERY RESULTS

Data for the LCS is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS was fortified and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

The %R for Aroclor-1016 in 97265LCS was biased high at 124%. However, sample results for Aroclor-1016 were non-detect in all samples analyzed. Therefore, no action was taken to qualify for this deficiency.

2.5.7 GENERAL LABORATORY OBSERVATIONS

The laboratory noted that samples KD-SB-6 3ft-4ft and KD-SB-9 3ft-4ft were diluted due to high concentrations of target analytes. Therefore, elevated reporting limits are provided.

2.6 WATER SAMPLES BY METHOD 8260B

2.6.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Water samples were collected on August 19, 2011 and were received on ice by the laboratory. No discrepancies were noted.

2.6.2 SAMPLE PRESERVATION AND HOLDING TIME

VOC samples were analyzed within holding time criteria. No discrepancies were noted.

2.6.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. Laboratory method blank samples (083011BLKA32 and 090211BLK62) were run with this SDG. One trip blank sample was also submitted with this SDG.

Acetone was detected at 2.1 ug/L, and 1,4-Dichlorobenzene was detected at 0.16 ug/L in 090211BLK62. Therefore, Acetone was qualified as non-detect and flagged "U" in sample KD-IDW-WATER-01.

2.6.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds (System Monitoring Compounds). Surrogate spike compounds included Dibromofluoromethane, Toluene-d8, 4-Bromofluorobenzene, and 1,2-Dichloroethane.

No discrepancies were noted.

2.6.5 MS/MSD RECOVERY RESULTS

Data for MS/MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

No MS/MSD samples were requested for this SDG.

2.6.6 LCS RECOVERY RESULTS

Data for the LCS is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS is fortified with the full list of VOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

The LCS recoveries for 083011LCSA31 were biased high for Bromobenzene (122%), 1,1,2,2-Tetrachloroethane (136%), 1,2-Dibromo-3-chloropropane (129%), and 1,2,4-Trichlorobenzene (124%). LCSD recoveries for 083011LCSDA31 were biased high for Bromobenzene (122%), 1,1,2,2-Tetrachloroethane (138%), 4-Chlorotoluene (124%), 1,2-Dibromo-3-chloropropane (126%), 1,2,4-Trichlorobenzene (125%), Hexachlorobutadiene (128%), and 1,2,3-Trichlorobenzene (129%). LCSD RPDs for 083011LCSA31D were biased high for Acetone (43.1%), 2-Butanone (26.7%), and 2-Hexanone (20.6%). Since sample KD-IDW-WATER-01 was non-detect for all VOCs analyzed, no action was taken to qualify for the high LCS/LCSD recoveries/RPDs.

2.7 WATER SAMPLES BY METHOD 8270C

2.7.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Water samples were collected on August 19, 2011 and were received on ice. No discrepancies were noted.

2.7.2 SAMPLE PRESERVATION AND HOLDING TIME

SVOC samples were analyzed within holding time criteria. No discrepancies were noted.

2.7.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. One laboratory method blank sample (97053MB) was run with this SDG.

Di-n-butylphthalate was detected at 1.5 ug/L, and Bis(2-ethylhexyl)phthalate was detected at 19.4 ug/L. Di-n-butylphthalate was qualified as non-detect and flagged "U" in sample KD-IDW-WATER-01 due to blank contamination.

2.7.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds. Surrogate spike compounds included 2-Fluorophenol, Phenol-d5, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and Terphenyl-d14.

No discrepancies were noted.

2.7.5 MS/MSD RECOVERY RESULTS

Data for MS/MSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

No MS/MSD samples were requested for this SDG.

2.7.6 LCS RECOVERY RESULTS

Data for the LCS is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS were fortified with the full list of SVOCs and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

The LCS recovery for 2,4-Dinitrophenol was biased low at 49.2% for 97054LCS. Therefore, 2,4-Dinitrophenol was qualified as estimated and flagged "J" in sample KD-IDW-WATER-01 due to low LCS recovery.

2.8 WATER SAMPLES BY METHOD 8082

2.8.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Water samples were collected on August 19, 2011 and were received on ice. No discrepancies were noted.

2.8.2 SAMPLE PRESERVATION AND HOLDING TIME

Samples were shipped on ice. Samples were analyzed within holding time criteria. No discrepancies were noted.

2.8.3 BLANK RESULTS

The purpose of laboratory (or field) blank analysis is to determine the existence and magnitude of contamination resulting from laboratory (or field) activities. One laboratory method blank sample (97050MB) was run with this SDG.

No laboratory method blank detects were noted.

2.8.4 SURROGATE RECOVERIES

Laboratory performance on individual samples is established by means of fortifying each sample with surrogate compounds. The surrogate spike compound included Decachlorobiphenyl.

No discrepancies were noted.

2.8.5 MS/MSD RECOVERY RESULTS

Data for MS/MSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis.

An MS/MSD was not requested for this SDG.

2.8.6 LCS and LCSD RECOVERY RESULTS

Data for the LCS and LCSD is generated to provide information on the accuracy of the analytical method and on the laboratory performance. The LCS and LCSD are fortified and analyzed with each batch of samples. The LCS and LCSD accuracy performance is measured by %R.

The RPD in 97052LCSD for Aroclor-1016 was biased high at 21.1%. However, the LCS and LCSD recoveries were within limits for Aroclor-1016. Therefore, no action was taken to qualify for this deficiency.

3.0 INORGANIC DATA VALIDATION RESULTS

The results of START's inorganic data validation are summarized below by QC audit reviewed. The data qualifiers listed below were applied to sample analytical results where warranted:

- J The analyte was detected. The reported concentration was considered estimated.
- U The analyte was not detected.
- UJ The analyte was not detected. The reporting limit was considered estimated.

After the START project staff received the data packages, they were inventoried for completeness and then reviewed according to matrix-specific protocols and data quality objectives established for the project.

3.1 SOIL SAMPLES BY METHOD 6010 B/7471

3.1.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Soil samples were collected on August 19, 2011 and were received on ice. Sample KD-SB-1 16'-16.5' had the 8-ounce sample jar broken during transit, but since the jar was contained in its own plastic bag, OTIE instructed the laboratory to run the analyses required.

3.1.2 SAMPLE PRESERVATION AND HOLDING TIME

Samples were analyzed within the holding time criteria. No discrepancies were noted.

3.1.3 BLANK RESULTS

The assessment of blank analysis results is to determine the existence and magnitude of contamination resulting from laboratory and/or field activities. A laboratory method blank sample for method 6010 and laboratory method blank sample for method 7471 were run with this SDG.

No laboratory method blank detects were noted.

3.1.4 LCS RECOVERY RESULTS

The LCS serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. The LCS is fortified with each analyte of interest and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

The LCS/LCSD %R were within acceptable recovery limits.

3.1.5 MS/MSD RECOVERY RESULTS

The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The MS/MSD accuracy performance is measured by %R.

An MS/MSD was requested on sample KD-SB-3 10ft-12ft. Chromium had biased low MS %R at 66.5%. Arsenic and Mercury had biased high MS %R at 138.2% and 207.8%, respectively. Mercury also had a biased high MSD %R at 192.8%. Arsenic had a high RPD of 28.4%. Therefore, Arsenic, Chromium, and Mercury in sample KD-SB-3 10ft-12ft were qualified as estimated and flagged "J" due to MS/MSD recoveries.

3.1.6 GENERAL LABORATORY OBSERVATIONS

The laboratory noted that samples KD-DRUM-1, KD-DRUM-2, KD-1 SB-1 16ft-16.5ft, KD-SB-2 11ft-12ft, KD-SB-2 6ft-8ft, KD-SB-3 10ft-12ft, and KD-SS-01 had to be diluted due to high concentrations of various metals.

3.2 TCLP SAMPLES BY METHOD 1311/6010 B/7470

3.2.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Samples were collected on August 19, 2011 and were received on ice. No discrepancies were noted.

3.2.2 SAMPLE PRESERVATION AND HOLDING TIME

Samples were analyzed within the holding time criteria. No discrepancies were noted.

3.2.3 BLANK RESULTS

The assessment of blank analysis results is to determine the existence and magnitude of contamination resulting from laboratory and/or field activities. A laboratory method blank sample for method 6010 TCLP and a laboratory method blank sample for method 7470 TCLP were run with this SDG.

No laboratory method blank detects were noted.

3.2.4 LCS RECOVERY RESULTS

The LCS serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. The LCS is fortified with each analyte of interest and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

The LCS/LCSD were all within acceptable recovery limits.

3.2.5 MS/MSD RECOVERY RESULTS

The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The MS/MSD accuracy performance is measured by %R.

No MS/MSD was requested for these analyses for this SDG.

3.3 WATER SAMPLES BY METHOD 6010 B/7470

3.3.1 SAMPLE HANDLING

Chain of custody documentation and sample receipt forms were reviewed to ensure requested analyses were performed and that samples arrived at the laboratory intact. Water samples were collected on August 19, 2011 and were received on ice. No discrepancies were noted.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

Samples were analyzed within the holding time criteria. No discrepancies were noted.

3.3.3 BLANK RESULTS

The assessment of blank analysis results is to determine the existence and magnitude of contamination resulting from laboratory and/or field activities. A laboratory method blank sample for method 6010 and laboratory method blank sample for method 7470 were run with this SDG.

No laboratory method blank detects were noted.

3.3.4 LCS RECOVERY RESULTS

The LCS serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. The LCS is fortified with each analyte of interest and analyzed with each batch of samples. The LCS accuracy performance is measured by %R.

The LCS/LCSD %R were all within acceptable recovery limits.

3.3.5 MS/MSD RECOVERY RESULTS

The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The MS/MSD accuracy performance is measured by %R.

No MS/MSD was requested for these analyses for this SDG.

4.0 OVERALL ASSESSMENT OF DATA

The analytical results meet the data quality objectives defined by the applicable method and validation guidance documentation. The analytical data is usable and acceptable as reported by the laboratory.

ATTACHMENT SUMMARY OF VALIDATED ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY

	_
	sturing HANIBAL TECHNOLOGY
PEL	A DIVISION OF SPECTRUM ANALYTICAL, INC, FURUING HANIBAL TECHNOLOGY
	A Division of

All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless Special Handling: TAT- Indicate Date Needed: otherwise instructed. 1 1012 CHAIN OF CUSTODY RECORI of A GO Page____ 6 (

									,	ر 14 م 10 م	977
DOM &		State:	Babu / 10Em		Notes:	QA/QC Reporting Level	□ Level II □ Level II □ Level IV	□ Other	State specific reporting standards:	one Ser jar brother the	The Action of the
200		000	aren	;	elow:			Sa			
3	2	9	>		ode b	· S:	50	\ \frac{1}{4\tau}	74 (X)
			;		ative (nalyse	50	45 	اله لمسر	X	•
	ame:	ion: _	ler(s):	,	reserv	Ϋ́	Fra	yəv:	mo	у Х	
	Site N	Locat	Samp	•	List pr	_	Zak	Me.	20101	8)
	1			1			- 4	794-	1st	×	
							-57	601	ग्ग णु	×	_
					ОН	ners:	COMI				2
				ON:	=CH3	Contai				-91	
	i			<u>بر</u> ا	1					2	L
					bic Aci			3	xittsM	8	-
					-Ascorl				Туре		
				No.: _	=9						
	i			P.O. N	5=NaOH	actewater	A=Air		Time:	1045	
B	10		_		\ \frac{1}{2} = 0		Sludge X3=				
# 3	60 to		3	3	4=HI 1	M		site	ate:	11/6	
M	ړ	16.8%	ý	B	SO ₄	diviste	Soil	ompo		8	
3	<i>(4</i>)	7-2	6	3	3=H ₂	1	SO=)=)		1.91-	
3	3	6.4	હ	√	HCI	[] [] []	Vater (2=	Grab	le Id:	77	
5	7	32	ž		2=j 9=	j j	face V	Ð	Same	-88-	
	2		58.		S2O ₃ HSO ₄	W. 20	= Sur			K	
- OC				t Mgr.	1=Na ₂		SW Yæy		 		
4				Project			Dw _L 0=0il X1=		Lab	ا ا	
	Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Site Name:	Site Name: Kokemo Pumf Location: Kekeno, &V	Site Name: Kokowo Pump Location: Kokowo Pump Location: Kokowo Pump Sampler(s): Name Babu	Site Name:	Site Name:	Site Name: Kokomo P.	Site Name: Kokomo Punf	Site Name: Kokemo Pumf Location: Kokemo Pumf Location: Kokemo Pumf Sampler(s): Note RQN: S=NaOH 6=Ascorbic Acid 7=CH ₃ OH List preservative code below: Note Rady Report Servation and Safety (100) S=NaOH 6=Ascorbic Acid 7=CH ₃ OH List preservative code below: Note Report Servater Serv	Site Name: Kokowo Punt Pont Procession: Rolling State: S=NaOH 6=Ascorbic Acid 7=CH3OH S=NaOH 6=Ascorbic Acid 7=CH3OH List preservative code below: S=NaOH 6=Ascorbic Acid 7=CH3OH List preservative code below: RQN: Analyses: RON: Analyses: RONC Reporting Level II Containers: RONC Reporting Level II Containers: RONC Reporting Level II Containers: Analyses: RONC Reporting Level II Containers: Time: Time	Site Name: Kokemo P.O. No.: S=NaOH 6=Ascorbic Acid 7=CH ₃ OH List preservative code below: S=NaOH 6=Ascorbic Acid 7=CH ₃ OH List preservative code below: Sampler(s): Containers: Be A=Air Be A=Air Time: Time:

G	11/41/8 121-121 8717/11	11/4118	ሀ 45	So 3	4	X e-	×	X	X X X X X	×	Thank it		0,1
707	-07 KD-DRUM-1	-	021	X Se	<u></u>	3		×					5N
ho	-CY KD-DRUM-2		1138	₽×2				X X					756
20,	-05 KD-55-01		GH ()	20	-			×					اه احدادا
90-	-06 KP-58-2 6-81		1330	દ્વ	-			X X					
-01	KD-58-3 10'-12'		1430	\$	-			×					
90-90-	-08-09 KP-58-3 10-12 MS/MS	MSD	1430	20	-			×					
2	-10 KD-88-6 3/41		1600	50 3	Ч	*	×	X X X	X	×			
=	KD-58-9 31-41	⇒	1600	50 3	7	¥.	X	X K	X X X X	×			
[May 19 00 10 201	The sam	-	Relipq	Relipquished by:	7		1	Received by:	l by:	Date:	Time:	
EDD Format (1 7		\$ 6010,8260		n a	4	B	2			8-33-11	900	
-	No purity that			8/19/1	0061								
Condition up	Condition upon receipt: Iced Ambient C-18,35,56	mbient ₩°C=	9,35,56		•								

8405 Benjamin Road, Suite A • Tampa, Florida 33634 • 813-888-9507 • FAX 813-889-7128 • www.pelab.com

	Iuring HANIBAL TECHNOLOGY
PEL	A DIVINION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY
	A DIVISION OF

Special Handling:

PEL GENERO CONTINUE CONTINUE HANDIBAL TECHNOLOGY	CHAIN OF CUSTODY RECORD	TAT- Indicate Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.
Nover Bolon	Invoice To:	20/0/01 /10/2
W MONROE #360		2
ext cores, De 60607	Site Name:	KOKONO YUMI
3892-959-218	Location:	Kokowo State: 10
MARRU @ ONE . COM	Sampler(s):	Noven Babu 11Dery
Br.: Noven Bohn	P.O. No.: RQN:	

Report To:_ 8

							7	
1	d is		State: //	by /IDEM		Notes:	QA/QC Reporting Level	D Level II
		FOREIVO MAN	Kokoro	Noven Bake		List preservative code below:	Analyses:	5
- Project No.		Site Name:	Location:_	Sampler(s):		List preserv	A	3-5 570 570
					RQN:	7=CH ₃ OH	Containers:	lass
TILVOICE 10:					.0::	6=Ascorbic Acid		sĮı
	;				P.O. No.:	5=NaOH	=Wastewater	dge A=Air =
Keport 10.	100 W MONROE #300	est cous, Dr 60607	315-656-7685	MARRU @ O DE COM	Project Mgr.: Noven Bahr	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 7=CH ₃ OH 8= NaHSO ₄ 9= 10= 10=	GW=Groundwater	O=Oil SW= Surface Water SO=Soil SL=Sludge A=Air X1= X2= X3=

X1=	X2=	X3=.			-17:/				47	nap	5,	76 50	ኃ <u>ራ</u>	_	<u> </u>	☐ Level III	U Level IV	
	G=Grab C=Composite	Composite			, v (oits	W J	∌W.	n	vi Vi	15	5		Other		
Lab Id:	Sample Id:	Date:	Time:	Type	xirtsM 	OV }o #	# of Cle	sl¶ lo #	whop	ENST.	204.01	427 1240l	اکدی	אמ	<u>ν</u> Ι	State specific reporting standards:	orting standards:	
دا-	KD-SB-7 41-61	11/61/18	16:40		8		~		X	X								
71-	KD-D188-5011-07	11/61/8	17:00		30		4			×		V	X	X				
, 된 /	KD -IDW-WATEROF	1 8719/11	50:4		WW 2	4		4	×		×	×		×		:		
-15	1-8 M				7						×				** 5 m	المساله والمراح	A. N. S. A.	コレ
	•				1						-3 -						"IENA	1187
															-			.
☐ E-mail to		MONTHE, COM	-		Relin	Relinquished by:	d by:				Rec	Received by	by:			Date:	Time:	
EDD Format		i.		/	// ×	Não	100		• • • • • • • • • • • • • • • • • • •	6	L					8-33-11	3	
	MORNING THI	7			<u> </u>	006/1/1/1/2	õ											
Condition up	Condition upon receipt: ☐ Iced ☐ Ambient ☐ °C.	mbient C				_									1	3		

8405 Benjamin Road, Suite A • Tampa, Florida 33634 • 813-888-9507 • FAX 813-889-7128 • www.pelab.com

	turing HANIBAL TECHNOLOGY
PEL	A DIVISION OF SPECTRUM ANALYTICAL, INC, Featuring HANIBAL TECHNOLOGY
	A DIVISION OF

Report To:_

Project Mgr...

· All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. · Samples disposed of after 60 days unless DO I State: TAT- Indicate Date Needed: Dung 11012 otherwise instructed. spen Bohn Koromo, In Ackomo 2010/01 CHAIN OF CUSTODY RECORD
3503863 Project No.:_ Site Name: Sampler(s): Location: RQN: Invoice To: P.O. No.: \$300 Bran CONE 60607 MondoE 312-656-7685 CHECAGO, DL Naver

Special Handling:

						3 0	-	T 1.04	7.	and the laws		
Z = X = X	1=Na ₂ S2O ₃ 2=HCl 3=H 8= NaHSO, 9=	$3=H_2SO_4$ $4=HNO_3$	5=NaOH	6=Asco	rbic Acid	6=Ascorbic Acid 7=CH ₃ OH 11=		LIST DIE	Servanive	LIST preservanve code below:	Ž	Notes:
									·			,
DW=Drin	DW=Drinking Water GW=Groundwater		WW=Wastewater			Containers:			Analyses	es:	QA/QC Re	QA/QC Reporting Level
O=Oil S			SL=Sludge A=Air		5						☐ Level I	X evel II
XI=	X2=	X3=			zlsi'			8			☐ Level III	☐ Level IV
	G=Grab C=	C=Composite			ΛΑC	O res		ĺοΑ			Other	
Lab Id:	Sample Id:	Date:	Time:	Type	xi'ttsM V To #	# of Ar		7249D			State specific re	State specific reporting standards:
10,	KD-5B-1 16765	11618 153	10 40		8			×				
Ģ	Kp - 872 - 211 - 12	7,7	= 45		8			×				
5	40-88-63-4		(S & O		50			8				
=	KO-88-9 31-4	\	\$ 92		ر ا			×				
	686											
☐ E-mail to		NBARV @ TE COM			Reling	Relinguished by:			Received by:	1 by:	Date:	Time:
EDD Format				\) {		2)		8-33-11	S S
	MORNAL	JAD JAD			8/22/11	1800	٥					
Condition t	Condition upon receipt:	☐ Ambient ☐ °C									:	

8405 Benjamin Road, Suite A • Tampa, Florida 33634 • 813-888-9507 • FAX 813-889-7128 • www.pelab.com

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-1 16ft-16.5ft
Lab Code: PEL Case No.	SAS No: SE	OG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386201	Lab File ID 86201M.D
Sample wt/vol: 8.74 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	
Level:(low/med) HIGH	Date Analyzed: 08/26/11	Time: 0037
PercentSolids: 95.2 decanted:	Dilution Factor: 50	
Extraction: PURGETRAP	Station ID:	Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:		
Column(1): D8-624 ID: 0.18 (mm),	
CONCENTRATION UNITS: UG/KG		

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
75-71-8	Dichlorodifluoromethane	60.1	U	18	60.1	
74-87-3	Chloromethane	60.1	U	11.4	60.1	
75-01-4	Vinyl chloride	60.1	U	18	60.1	
74-83-9	Bromomethane	60.1	U	36	60.1	
75-00-3	Chloroethane	60.1	U	22.2	60.1	
75-69-4	Trichlorofluoromethane	60.1	U	13.2	60.1	
75-35-4	1,1-Dichloroethene	60.1	U	10.2	60.1	
74-88-4	Methyl iodide	60.1	U	45.1	60.1	
75-15-0	Carbon disulfide	60.1	U	45.1	60.1	
75-09-2	Methylene chloride	150	U	36	150	
156-60-5	trans-1,2-Dichloroethene	60.1	U	11.7	60.1	
75-34-3	1,1-Dichloroethane	60.1	U	10.2	60.1	
67-64-1	Acetone	86	JB U	39.1	300	
594-20-7	2,2-Dichloropropane	60.1	U	17.7	60.1	
156-59-2	cis-1,2-Dichloroethene	60.1	U	18.6	60.1	
74-97-5	Bromochloromethane	60.1	U	27	60.1	
78-93-3	2-Butanone	300	U	42.1	300	
67-66-3	Chloroform	60.1	U	16.2	60.1	
71-55-6	1,1,1-Trichloroethane	60.1	U	30	60.1	
56-23-5	Carbon tetrachloride	60.1	U	18	60.1	
563-58-6	1,1-Dichloropropene	60.1	U	12.3	60.1	
71-43-2	Benzene	60.1	U	15	60.1	
107-06-2	1,2-Dichloroethane	60.1	U	30	60.1	
79-01-6	Trichloroethene	60.1	U	13.2	60.1	
108-05-4	Vinyl acetate	60.1	U	45.1	60.1	
78-87-5	1,2-Dichloropropane	60.1	U	18.9	60.1	

(BW)

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract	:: Kokomo Dump / 2010101 / 101	KD-SB-1 16ft-16.5ft
Lab Code: PEL Case No.	SAS No: SE	OG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386201	Lab File ID 86201M.D
Sample wt/vol: 8.74 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	
Level:(low/med) HIGH	Date Analyzed: 08/26/11	Time: 0037
PercentSolids: 95.2 decanted:	Dilution Factor: 50	
Extraction: PURGETRAP	Station ID:	Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:		
Column(1): DB-624 ID: 0.18 (m	nm)	
CONCENTRATION UNITS: UG/KG		

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
74-95-3	Dibromomethane	60.1	υ	19.8	60.1	_
75-27-4	Bromodichloromethane	60.1	U	9.6	60.1	
10061-01-5	cis-1,3-Dichloropropene	60.1	U	12.6	60.1	
108-10-1	4-Methyl-2-pentanone	300	U	48.1	300	
108-88-3	Toluene	60.1	U	8.7	60.1	
10061-02-6	trans-1,3-Dichloropropene	60.1	U	30	60.1	
79-00-5	1,1,2-Trichloroethane	60.1	U	24.6	60.1	
127-18-4	Tetrachloroethene	60.1	U	27.9	60.1	
142-28-9	1,3-Dichloropropane	60.1	U	16.2	60.1	
591-78-6	2-Hexanone	300	U	39.1	300	
124-48-1	Dibromochloromethane	60.1	U	13.8	60.1	
106-93-4	1,2-Dibromoethane	60.1	U	24.6	60.1	
108-90-7	Chlorobenzene	60.1	U	10.5	60.1	
630-20-6	1,1,1,2-Tetrachloroethane	60.1	U	22.2	60.1	
100-41-4	Ethylbenzene	60.1	U 🖑	20.7	60.1	
179601-23-1	m,p-Xylene	120	U	20.4	120	
95-47-6	o-Xylene	32.5	J	10,5	60.1	
100-42-5	Styrene	60.1	U	8.4	60.1	
75-25-2	Bromoform	60.1	U	13.8	60.1	
98-82-8	Isopropylbenzene	92.3		18	60.1	
108-86-1	Bromobenzene	60.1	U	33	60.1	
79-34-5	1,1,2,2-Tetrachloroethane	60.1	U	17.7	60.1	
96-18-4	1,2,3-Trichloropropane	60.1	U	36	60.1	
103-65-1	n-Propylbenzene	151		20.4	60.1	
95-49-8	2-Chlorotoluene	60.1	U	14,4	60.1	
106-43-4	4-Chiorotoluene	60.1	U	15.6	60.1	

VSV

EPA Sample No.

KD-SB-1 16ft-16.5ft Lab Name: Spectrum Analytical, inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code : PEL Case No. SDG No.: 3503862 SAS No: Lab File ID 86201M.D Lab Sample ID: 350386201 Matrix: SOIL Sample wt/vol: 8,74 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) HIGH Date Analyzed: 08/26/11 Time: 0037 PercentSolids: 95.2 decanted : Dilution Factor: 50 Extraction: PURGETRAP Station ID: Method: 8260 GPC Cleanup : (Y/N) pH: ID: 0.18 Column(1): DB-624 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
108-67-8	1,3,5-Trimethylbenzene	94.5		15.6	60.1
98-06-6	tert-Butylbenzene	60.1	U	20.4	60.1
95-63-6	1,2,4-Trimethylbenzene	630		13.2	60.1
135-98-8	sec-Butylbenzene	351		19.2	60.1
541-73-1	1,3-Dichlorobenzene	150	U	13.5	150
106-46-7	1,4-Dichlorobenzene	22.8	J	19.5	150
99-87-6	4-Isopropyltoluene	60.1	U	21.3	60.1
104-51-8	n-Butylbenzene	60.1	U	18.6	60.1
95-50-1	1,2-Dichlorobenzene	675		16.8	150
96-12-8	1,2-Dibromo-3-chloropropane	150	U	84.1	150
120-82-1	1,2,4-Trichlorobenzene	150	U	18.9	150
87-68-3	Hexachlorobutadiene	60.1	U	36	60.1
91-20-3	Naphthalene	187	,8′ U	45.1	150
87-61-6	1,2,3-Trichlorobenzene	150	U	18.3	150
1634-04-4	Methyl tert-butyl ether	60.1	U	12.9	60.1

(8M

EPA Sample No.

KD-SB-2 11ft-12ft Lab Name: Spectrum Analytical, inc. Contract: Kokomo Dump / 2010101 / 101 SDG No.: 3503862 Lab Code: PEL Case No. SAS No: SOIL Matrix: Sample wt/vol: 9.2 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) HIGH Date Analyzed: 08/26/11 Time: 0102 74.4 decanted : PercentSolids: Dilution Factor: 50 Extraction: PURGETRAP Method: 8260 Station ID: GPC Cleanup : (Y/N) pH:

Column(1): DB-624 ID: 0.18 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
75-71-8	Dichlorodifluoromethane	73	U	21.9	73
74-87-3	Chloromethane	73	U	13.9	73
75-01-4	Vinyl chloride	73	U	21.9	73
74-83-9	Bromomethane	73	U	43.8	73
75-00-3	Chloroethane	73	U	27	73
75-69-4	Trichlorofluoromethane	73	U	16.1	73
75-35-4	1,1-Dichloroethene	73	U	12.4	73
74-88-4	Methyl iodide	73	U	54.8	73
75-15-0	Carbon disulfide	73	U	54.8	73
75-09-2	Methylene chloride	183	U	43.8	183
156-60-5	trans-1,2-Dichloroethene	358		14.2	73
75-34-3	1,1-Dichloroethane	73	U	12.4	73
67-64-1	Acetone	178	,V8 √V	47.5	365
594-20-7	2,2-Dichloropropane	73	U	21.5	73
156-59-2	cis-1,2-Dichloroethene	1120		22.6	73
74-97-5	Bromochloromethane	73	U	32.9	73
78-93-3	2-Butanone	365	U	51.1	365
67-66-3	Chloroform	73	U	19.7	73
71-55-6	1,1,1-Trichloroethane	73	U	36.5	73
56-23-5	Carbon tetrachloride	73	U	21.9	73
563-58-6	1,1-Dichloropropene	73	U	15	73
71-43-2	Benzene	27.1	j	18.3	73
107-06-2	1,2-Dichloroethane	73	U	36.5	73
79-01-6	Trichloroethene	950		16.1	73
108-05-4	Vinyl acetate	73	U	54.8	73
78-87-5	1,2-Dichloropropane	73	U	23	73

W&Y

KD-SB-2 11ft-12ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 SDG No.: 3503862 SAS No: Lab Code: PEL Case No. Lab Sample ID: 350386202 Lab File ID 86202M.D Matrix: SOIL Sample wt/vol: 9.2 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) HIGH Time: 0102 Date Analyzed: 08/26/11 PercentSolids: 74.4 decanted: Dilution Factor: 50 Extraction: PURGETRAP Method: 8260 Station ID:

EPA Sample No.

DΙ

ARDI

GPC Cleanup : (Y/N) pH: Column(1): DB-624 ID: 0.18 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
74-95-3	Dibromomethane	73	U	24.1	73
75-27-4	Bromodichloromethane	73	U	11.7	73
10061-01-5	cis-1,3-Dichloropropene	73	U	15.3	73
108-10-1	4-Methyl-2-pentanone	365	U	58.4	365
108-88-3	Toluene	268		10.6	73
10061-02-6	trans-1,3-Dichloropropene	73	U	36.5	73
79-00-5	1,1,2-Trichloroethane	73	U	29.9	73
127-18-4	Tetrachloroethene	430		34	73
142-28-9	1,3-Dichloropropane	73	Ü	19.7	73
591-78-6	2-Hexanone	365	Ü	47.5	365
124-48-1	Dibromochloromethane	73	U	16.8	73
106-93-4	1,2-Dibromoethane	73	U	29.9	73
108-90-7	Chlorobenzene	83.1		12.8	73
630-20-6	1,1,1,2-Tetrachloroethane	73	U	27	73
100-41-4	Ethylbenzene	172	J	25.2	73
179601-23-1	m,p-Xylene	235		24.8	146
95-47-6	o-Xylene	267		12.8	73
100-42-5	Styrene	73	U	10.2	73
75-25-2	Bromoform	73	U	16.8	73
98-82-8	Isopropylbenzene	658		21.9	73
108-86-1	Bromobenzene	73	U	40.2	73
79-34-5	1,1,2,2-Tetrachloroethane	73	U	21.5	73
96-18-4	1,2,3-Trichloropropane	73	U	43.8	73
103-65-1	n-Propylbenzene	1110		24.8	73
95-49-8	2-Chlorotoluene	73	U	17.5	73
106-43-4	4-Chlorotoluene	73	U	19	73

Form I

EPA Sample No.

KD-SB-2 11ft-12ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Lab File ID 86202M.D Matrix: SOIL Lab Sample ID: 350386202 Sample wt/vol: 9.2 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) HIGH Time: 0102 Date Analyzed: 08/26/11 PercentSolids: 74.4 decanted: Dilution Factor: 50 Extraction: PURGETRAP Station ID: Method: 8260 GPC Cleanup : (Y/N) pH: Column(1): DB-624 ID: 0.18 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q		MDL	RL
108-67-8	1,3,5-Trimethylbenzene	902			19	73
98-06-6	tert-Butylbenzene	147			24.8	73
95-63-6	1,2,4-Trimethylbenzene	12800	Æ	R	16.1	73
135-98-8	sec-Butylbenzene	2310			23.4	73
541-73-1	1,3-Dichlorobenzene	183	U		16.4	183
106-46-7	1,4-Dichlorobenzene	183	U		23.7	183
99-87-6	4-isopropyitoluene	433			25.9	73
104-51-8	n-Butylbenzene	3290	Æ	R	22.6	73
95-50-1	1,2-Dichlorobenzene	183	U		20.4	183
96-12-8	1,2-Dibromo-3-chloropropane	183	U		102	183
120-82-1	1,2,4-Trichlorobenzene	183	U		23	183
87-68-3	Hexachlorobutadiene	73	U		43.8	73
91-20-3	Naphthalene	1400	_8′		54.8	183
87-61-6	1,2,3-Trichlorobenzene	183	U		22.3	183
1634-04-4	Methyl tert-butyl ether	73	U		15.7	73

V 28V

EPA Sample No.

KD-SB-2 11ft-12ftDL1 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101

Lab Code: PEL Case No. SAS No: SDG No.: 3503862

Lab Sample ID: 350386202DL1 Lab File ID 86202MD.D Matrix: SOIL

Date Received: 08/23/11 Sample wt/vol: 9.2 Units: G

Concentrated Extract Volume: 5 Date Extracted:

Level:(low/med) HIGH Date Analyzed: 08/26/11 Time: 0127

decanted : PercentSolids: 74.4 Dilution Factor: 500

Extraction: PURGETRAP Method: <u>8260</u> Station ID:

GPC Cleanup : (Y/N) рН: (mm)

CONCENTRATION UNITS: UG/KG

ID: 0.18

Column(1): DB-624

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
75-71-8	Dichlorodifluoromethane	730	p-R	219	730
74-87-3	Chloromethane	730	lu	139	730
75-01-4	Vinyl chloride	730	U .	219	730
74-83-9	Bromomethane	730	u	438	730
75-00-3	Chloroethane	730	U	270	730
75-69-4	Trichlorofluoromethane	730	b	161	730
75-35-4	1,1-Dichloroethene	730	þ	124	730
74-88-4	Methyl iodide	730	U	548	730
75-15-0	Carbon disulfide	730	U	548	730
75-09-2	Methylene chloride	1830	U	438	1830
156-60-5	trans-1,2-Dichloroethene	366		142	730
75-34-3	1,1-Dichloroethane	730	U	124	730
67-64-1	Acetone	754	JB │	475	3650
594-20-7	2,2-Dichloropropane	730	U	215	730
156-59-2	cis-1,2-Dichloroethene	1140		226	730
74-97-5	Bromochloromethane	730	Ú	329	730
78-93-3	2-Butanone	3650	Ų	511	3650
37-66-3	Chloroform	730	Ų	197	730
71-55-6	1,1,1-Trichloroethane	730	Ų	365	730
56-23-5	Carbon tetrachloride	730	Ù	219	730
563-58-6	1,1-Dichloropropene	730	-	150	730
71-43-2	Benzene	730	.	183	730
107-06-2	1,2-Dichloroethane	730		365	730
79-01-6	Trichloroethene	957	CA COMPANY AND A CASE OF THE C	161	730
108-05-4	Vinyl acetate	730		548	730
78-87-5	1,2-Dichloropropane	730	- i -	230	730

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2	2010101 / 101	KD-SB-2 11ft-12ftDL1
Lab Code : PEL Case No.	SAS No:	SE	OG No.: 3503862
Matrix: SOIL	Lab Sample ID:	350386202DL1	Lab File ID 86202MD.D
Sample wt/vol: 9.2 Units: G	Date Received:	08/23/11	
Concentrated Extract Volume: 5	Date Extracted:		
Level:(low/med) HIGH	Date Analyzed:	08/26/11	Time: 0127
PercentSolids: 74.4 decanted:	Dilution Factor:	500	
Extraction: PURGETRAP	Station ID:		Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:			
Column(1): DB-624 ID: 0.18 (mm	n)		
CONCENTRATION UNITS: UG/KG			

CAS NO.	ANALYTE	RESULT	Q		MDL	RL
74-95-3	Dibromomethane	730	 	R	241	730
75-27-4	Bromodichloromethane	730	þ		117	730
10061-01-5	cis-1,3-Dichloropropene	730	þ		153	730
108-10-1	4-Methyl-2-pentanone	3650	þ		584	3650
108-88-3	Toluene	254	J		106	730
10061-02-6	trans-1,3-Dichloropropene	730	Ų		365	730
79-00-5	1,1,2-Trichloroethane	730	Ų		299	730
127-18-4	Tetrachloroethene	480	þ		340	730
142-28-9	1,3-Dichloropropane	730	Ų		197	730
591-78-6	2-Hexanone	3650	U		475	3650
124-48-1	Dibromochloromethane	730	þ		168	730
106-93-4	1,2-Dibromoethane	730	U		299	730
108-90-7	Chlorobenzene	730	þ		128	730
630-20-6	1,1,1,2-Tetrachloroethane	730	Ų		270	730
100-41-4	Ethylbenzene	730	U		252	730
179601-23-1	m,p-Xylene	1460	Ų		248	1460
95-47-6	o-Xylene	257	Ų		128	730
100-42-5	Styrene	730	Ų		102	730
75-25-2	Bromoform	730	Ų		168	730
98-82-8	Isopropylbenzene	749			219	730
108-86-1	Bromobenzene	730	þ		402	730
79-34-5	1,1,2,2-Tetrachloroethane	730	Ų		215	730
96-18-4	1,2,3-Trichloropropane	730	Ų		438	730
103-65-1	n-Propylbenzene	1260	destroller		248	730
95-49-8	2-Chlorotoluene	730	Ų		175	730
106-43-4	4-Chlorotoluene	730	Ù-	V	190	730

Form I

EPA Sample No.

KD-SB-2 11ft-12ftDL1 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Lab Sample ID: 350386202DL1 Lab File ID 86202MD.D Matrix: SOIL Sample wt/vol: 9.2 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) HIGH Date Analyzed: 08/26/11 Time: 0127 decanted : PercentSolids: 74.4 Dilution Factor: 500 Extraction: PURGETRAP Station ID: Method: 8260 GPC Cleanup : (Y/N) pH: Column(1): DB-624 ID: 0.18 (mm) CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
108-67-8	1,3,5-Trimethylbenzene	1040	r R	190	730	
98-06-6	tert-Butylbenzene	730	Py 7	248	730	
95-63-6	1,2,4-Trimethylbenzene	21800		161	730	
135-98-8	sec-Butylbenzene	2680	r R	234	730	
541-73-1	1,3-Dichlorobenzene	1830	\ \	164	1830	
106-46-7	1,4-Dichlorobenzene	1830	U I	237	1830	
99-87-6	4-Isopropyltoluene	524	1 4	259	730	
104-51-8	n-Butylbenzene	3860		226	730	
95-50-1	1,2-Dichlorobenzene	1830	# R	204	1830	
96-12-8	1,2-Dibromo-3-chloropropane	1830	υ	1020	1830	
120-82-1	1,2,4-Trichlorobenzene	1830	Ù	230	1830	
87-68-3	Hexachlorobutadiene	730	Ų	438	730	
91-20-3	Naphthalene	3270	B	548	1830	
87-61-6	1,2,3-Trichlorobenzene	1830	Ů Ì	223	1830	
1634-04-4	Methyl tert-butyl ether	730	₽ √	157	730	

MEN

EPA Sample No. KD-SB-6 3ft-4ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 SOIL Matrix: Lab File ID 862-10.D Lab Sample ID: 350386210 Sample wt/vol: 2.02 Units: G Date Received: 08/23/11 Concentrated Extract Volume; 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 08/26/11 Time: 1344 decanted : PercentSolids: 75.2 Dilution Factor: 1 Extraction: PURGETRAP Station ID: Method: 8260 pH: GPC Cleanup : (Y/N) Column(1): DB-624 ID: 0,18 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
75-71-8	Dichlorodifluoromethane	6.6	U	2	6.6
74-87-3	Chloromethane	6.6	U	1.2	6.6
75-01-4	Vinyl chloride	6.6	U	2	6.6
74-83-9	Bromomethane	6.6	U	3.9	6.6
75-00-3	Chloroethane	6.6	U	2.4	6.6
75-69-4	Trichlorofluoromethane	6.6	U	1.4	6.6
75-35-4	1,1-Dichloroethene	6.6	U	1.1	6.6
74-88-4	Methyl iodide	6.6	U	4.9	6.6
75-15-0	Carbon disulfide	6.6	U	4.9	6.6
75-09-2	Methylene chloride	18		3.9	16.4
156-60-5	trans-1,2-Dichloroethene	6.6	U	1.3	6.6
75-34-3	1,1-Dichloroethane	6.6	U	1.1	6.6
67-64-1	Acetone	32.9	U	4.3	32.9
594-20-7	2,2-Dichloropropane	6.6	U	1.9	6.6
156-59-2	cis-1,2-Dichloroethene	6.6	U	2	6.6
74-97-5	Bromochloromethane	6.6	U	3	6.6
78-93-3	2-Butanone	32.9	U	4.6	32.9
67-66-3	Chloroform	6.6	U	1.8	6.6
71-55-6	1,1,1-Trichloroethane	6.6	U	3.3	6.6
56-23-5	Carbon tetrachloride	6.6	U	2	6.6
563-58-6	1,1-Dichloropropene	6.6	U	1.3	6.6
71-43-2	Benzene	6.6	U	1.6	6.6
107-06-2	1,2-Dichloroethane	6.6	U	3.3	6.6
79-01-6	Trichloroethene	6.6	U	1.4	6.6
108-05-4	Vinyl acetate	6.6	U	4.9	6.6
78-87-5	1,2-Dichloropropane	6.6	ť	2.1	6.6

Form I

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-6 3ft-4ft
Lab Code: PEL Case No.	SAS No:	SDG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386210	Lab File ID 862-10.D
Sample wt/vol: 2.02 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	
Level:(low/med) LOW	Date Analyzed: 08/26/11	Time: 1344
PercentSolids: 75.2 decanted :	Dilution Factor: 1	
Extraction: PURGETRAP	Station ID:	Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:		
Column(1): DB-624 ID: 0.18 (mm)	

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
74-95-3	Dibromomethane	6.6	U	2.2	6.6	
75-27-4	Bromodichloromethane	6.6	U	1	6.6	
10061-01-5	cis-1,3-Dichloropropene	6.6	U	1.4	6.6	
108-10-1	4-Methyl-2-pentanone	32.9	U	5.3	32.9	
108-88-3	Toluene	6.6	U	0.95	6.6	
10061-02-6	trans-1,3-Dichloropropene	6.6	U	3.3	6.6	
79-00-5	1,1,2-Trichloroethane	6.6	Ü	2.7	6.6	
127-18-4	Tetrachloroethene	6.6	U	3.1	6.6	
142-28-9	1,3-Dichloropropane	6.6	U	1.8	6.6	
591-78-6	2-Hexanone	32.9	U	4.3	32.9	
124-48-1	Dibromochloromethane	6.6	U	1.5	6.6	
106-93-4	1,2-Dibromoethane	6.6	U	2.7	6.6	
108-90-7	Chlorobenzene	6.6	Ü	1.2	6.6	
630-20-6	1,1,1,2-Tetrachloroethane	6.6	U	2.4	6.6	
100-41-4	Ethylbenzene	6.6	Uゴ	2.3	6.6	
179601-23-1	m,p-Xylene	13.2	U	2.2	13.2	
95-47-6	o-Xylene	6.6	U	1.2	6.6	
100-42-5	Styrene	6.6	U	0.92	6.6	
75-25-2	Bromoform	6.6	U	1.5	6.6	
98-82-8	Isopropyibenzene	6.6	U	2	6.6	
108-86-1	Bromobenzene	6.6	U	3.6	6.6	
79-34-5	1,1,2,2-Tetrachloroethane	6.6	Ü	1.9	6.6	
96-18-4	1,2,3-Trichloropropane	6.6	Ü	3.9	6.6	
103-65-1	n-Propylbenzene	6.6	U	2.2	6.6	
95-49-8	2-Chlorotoluene	6.6	U	1.6	6.6	
106-43-4	4-Chlorotoluene	6.6	U	1.7	6.6	

Form I

CONCENTRATION UNITS: UG/KG

EPA Sample No.

KD-SB-6 3ft-4ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Case No. SAS No: SDG No.: 3503862 Lab Code: PEL Lab File ID 862-10.D Matrix: SOIL Lab Sample ID: 350386210 Sample wt/vol: 2.02 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 08/26/11 Time: 1344 PercentSolids: 75.2 decanted : Dilution Factor: 1 Extraction: PURGETRAP Method: <u>8260</u> Station ID: GPC Cleanup : (Y/N) pH: Column(1): DB-624 ID: 0.18 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
108-67-8	1,3,5-Trimethylbenzene	6.6	U	1.7	6.6
98-06-6	tert-Butylbenzene	6.6	U	2.2	6.6
95-63-6	1,2,4-Trimethylbenzene	6.6	U	1.4	6.6
135-98-8	sec-Butylbenzene	6.6	U	2.1	6.6
541-73-1	1,3-Dichlorobenzene	16.4	U	1.5	16.4
106-46-7	1,4-Dichlorobenzene	16.4	U	2.1	16.4
99-87-6	4-isopropyltoluene	6.6	U	2.3	6.6
104-51-8	n-Butylbenzene	6.6	U	2	6.6
95-50-1	1,2-Dichlorobenzene	16.4	U	1.8	16.4
96-12-8	1,2-Dibromo-3-chloropropane	16.4	U	9.2	16.4
120-82-1	1,2,4-Trichlorobenzene	16.4	U	2.1	16.4
37-68-3	Hexachlorobutadiene	6.6	U	3.9	6.6
91-20-3	Naphthalene	16.4	ਪ	4.9	16.4
37-61-6	1,2,3-Trichlorobenzene	16.4	U	2	16.4
1634-04-4	Methyl tert-butyl ether	6.6	U	1.4	6.6

VXXV

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract	: Kokomo Dump / 2010101 / 101	KD-SB-9 3ft-4ft
Lab Code: PEL Case No.	SAS No: SE	OG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386211	Lab File ID 862-11.D
Sample wt/vol: 2.63 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	
Level:(low/med) LOW	Date Analyzed: 08/25/11	Time: 1427
PercentSolids: 74.4 decanted:	Dílution Factor: 1	
Extraction: PURGETRAP	Station ID:	Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:		
Column(1): DB-624 ID: 0.18 (m	m)	
CONCENTRATION UNITS: UG/KG		

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
75-71-8	Dichlorodifluoromethane	5.1	U	1.5	5.1
74-87-3	Chloromethane	5.1	U	0.97	5.1
75-01-4	Vinyl chloride	5.1	U	1.5	5.1
74-83-9	Bromomethane	5.1	U	3.1	5.1
75-00-3	Chloroethane	5.1	U	1.9	5.1
75-69-4	Trichlorofluoromethane	5.1	U	1.1	5.1
75-35-4	1,1-Dichloroethene	5.1	U	0.87	5.1
74-88-4	Methyl iodide	5.1	U	3.8	5.1
75-15-0	Carbon disulfide	5.1	U	3.8	5.1
75-09-2	Methylene chloride	38.5		3.1	12.8
156-60-5	trans-1,2-Dichloroethene	5.1	U	1	5.1
75-34-3	1,1-Dichloroethane	5.1	U	0.87	5.1
67-64-1	Acetone	25.6	U	3.3	25.6
594-20-7	2,2-Dichloropropane	5.1	U	1.5	5.1
156-59-2	cis-1,2-Dichloroethene	5.1	U	1.6	5.1
74-97-5	Bromochloromethane	5.1	U	2.3	5.1
78 - 93-3	2-Butanone	25.6	U	3.6	25.6
67-66-3	Chloroform	5.1	U	1.4	5.1
71-55-6	1,1,1-Trichloroethane	5.1	U	2.6	5.1
56-23-5	Carbon tetrachloride	5.1	U	1.5	5.1
563-58-6	1,1-Dichloropropene	5.1	U	1	5.1
71-43-2	Benzene	5.1	U	1.3	5.1
107-06-2	1,2-Dichloroethane	5.1	U	2.6	5.1
79-01-6	Trichloroethene	5.1	U	1.1	5.1
108-05-4	Vinyl acetate	5.1	U	3.8	5.1
78-87-5	1,2-Dichloropropane	5.1	U	1.6	5.1

089911 1740 Form I

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 KD-SB-9 3ft-4ft

Lab Code: PEL Case No. SAS No: SDG No.: 3503862

Matrix: SOIL Lab Sample ID: 350386211 Lab File ID 862-11.D

Sample wt/vol: 2.63 Units: G Date Received: 08/23/11

Concentrated Extract Volume: 5 Date Extracted:

Level:(low/med) LOW Date Analyzed: 08/25/11 Time: 1427

PercentSolids: 74.4 decanted: Dilution Factor: 1

Extraction: PURGETRAP Station ID: Method: 8260

GPC Cleanup : (Y/N) pH:

Column(1): DB-624 ID: 0.18 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
74-95-3	Dibromomethane	5.1	U	1.7	5.1
75-27-4	Bromodichloromethane	5.1	U	0.82	5.1
10061-01-5	cis-1,3-Dichloropropene	5.1	U	1.1	5.1
108-10-1	4-Methyl-2-pentanone	25.6	ਪ	4.1	25.6
108-88-3	Toluene	5.1	U	0.74	5.1
10061-02-6	trans-1,3-Dichloropropene	5.1	U	2.6	5.1
79-00-5	1,1,2-Trichloroethane	5.1	U	2.1	5.1
127-18-4	Tetrachloroethene	5.1	U	2.4	5.1
142-28-9	1,3-Dichloropropane	5.1	U	1.4	5.1
591-78-6	2-Hexanone	25.6	U	3.3	25.6
124-48-1	Dibromochloromethane	5.1	U	1.2	5.1
106-93-4	1,2-Dibromoethane	5.1	U	2.1	5.1
108-90-7	Chlorobenzene	5.1	U	0.89	5.1
30-20-6	1,1,1,2-Tetrachloroethane	5.1	U	1.9	5.1
100-41-4	Ethylbenzene	5.1	UI	1.8	5.1
179601-23-1	m,p-Xylene	10.2	U	1.7	10.2
35-47-6	o-Xylene	5.1	U	0.89	5.1
100-42-5	Styrene	5.1	U	0.72	5.1
75-25-2	Bromoform	5.1	U	1.2	5.1
8-82-8	Isopropylbenzene	5.1	U	1.5	5.1
108-86-1	Bromobenzene	5.1	U	2.8	5.1
'9-34-5	1,1,2,2-Tetrachloroethane	5.1	U	1.5	5.1
06-18-4	1,2,3-Trichloropropane	5.1	U	3,1	5.1
03-65-1	n-Propylbenzene	5.1	U	1.7	5.1
95-49-8	2-Chlorotoluene	5.1	U	1.2	5.1
106-43-4	4-Chlorotoluene	5.1	U	1.3	5.1

MRY

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-9 3ft-4ft
Lab Code: PEL Case No.	SAS No:	DG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386211	Lab File ID 862-11.D
Sample wt/vol: 2.63 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	
Level:(low/med) LOW	Date Analyzed: 08/25/11	Time: 1427
PercentSolids: 74.4 decanted:	Dilution Factor: 1	
Extraction: PURGETRAP	Station ID:	Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:		
Column(1): DB-624 ID: 0.18 (mm)	

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
108-67-8	1,3,5-Trimethylbenzene	5,1	U	1.3	5.1
98-06-6	tert-Butylbenzene	5.1	U	1.7	5.1
95-63-6	1,2,4-Trimethylbenzene	5.1	U	1.1	5.1
35-98-8	sec-Butylbenzene	5.1	U	1.6	5.1
541-73-1	1,3-Dichlorobenzene	12.8	U	1.1	12.8
06-46-7	1,4-Dichlorobenzene	12.8	U	1.7	12.8
9-87-6	4-Isopropyltoluene	5.1	U	1.8	5.1
04-51-8	n-Butylbenzene	5.1	U	1.6	5.1
5-50-1	1,2-Dichlorobenzene	12.8	U	1.4	12.8
6-12-8	1,2-Dibromo-3-chloropropane	12.8	U	7.2	12.8
20-82-1	1,2,4-Trichlorobenzene	12.8	U	1.6	12.8
7-68-3	Hexachlorobutadiene	5.1	U	3.1	5.1
1-20-3	Naphthalene	12.8	U	3.8	12.8
7-61-6	1,2,3-Trichlorobenzene	12.8	U	1.6	12.8
634-04-4	Methyl tert-butyl ether	5.1	U	1.1	5.1

Form I

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-IDW-WATER-01
Lab Code: PEL Case No.	SAS No: S	DG No.: 3503862
Matrix: WATER	Lab Sample ID: 350386214	Lab File ID 86214R.D
Sample wt/vol: 5 Units: ML	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	
Level:(low/med) LOW	Date Analyzed: 09/02/11	Time: 1114
PercentSolids: 0 decanted:	Dilution Factor: 1	
Extraction: PURGETRAP	Station ID:	Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:		
Column(1): DB-624 ID: 0.18 (mm)	

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
75-71 - 8	Dichlorodifluoromethane	1	U	0.17	1
74-87-3	Chloromethane	1	U	0.32	1
75-01-4	Vinyl chloride	1	U	0.18	1
74-83-9	Bromomethane	1	U	0.43	1
75-00-3	Chloroethane	1	U	0.72	1
75-69-4	Trichlorofluoromethane	1	U	0.4	1
75-35-4	1,1-Dichloroethene	0.5	U	0.19	0.5
74-88-4	Methyl iodide	1	U	0.74	1
75-15-0	Carbon disulfide	1	U	0.19	1
75-09-2	Methylene chloride	5	U	0.66	5
156-60-5	trans-1,2-Dichloroethene	0.5	U	0.33	0.5
75-34-3	1,1-Dichloroethane	1	U	0.15	1
67-64-1	Acetone	3.3	JB′ U.	1.3	10
594-20-7	2,2-Dichloropropane	1	U	0.6	1
156-59-2	cis-1,2-Dichloroethene	0.5	U	0.19	0.5
74-97-5	Bromochloromethane	1	U	0.17	1
78-93-3	2-Butanone	4	U	2	4
67-66-3	Chloroform	0.5	U	0.16	0.5
71-55-6	1,1,1-Trichloroethane	1	U	0.14	1
56-23-5	Carbon tetrachloride	0.5	U	0.14	0.5
563-58-6	1,1-Dichloropropene	1	U	0.3	1
71-43-2	Benzene	0.5	U	0.17	0.5
107-06-2	1,2-Dichloroethane	0.5	U	0.15	0.5
79-01-6	Trichloroethene	0.5	U	0.19	0.5
108-05-4	Vinyl acetate	1	U	0.18	1
78-87-5	1,2-Dichloropropane	1	U	0.15	1

KBW

CONCENTRATION UNITS: UG/L

EPA Sample No.

KD-IDW-WATER-01 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Case No. SDG No.: 3503862 SAS No: Lab Code: PEL Matrix: WATER Units: ML Date Received: 08/23/11 Sample wt/vol: 5 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1114 PercentSolids: 0 decanted: Dilution Factor: 1 Extraction: PURGETRAP Station ID: Method: 8260 GPC Cleanup : (Y/N) pH: ID: 0.18 (mm) Column(1): DB-624

CONCENTRATION UNITS: UG/L

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
74-95-3	Dibromomethane	1	U	0.4	1	
75-27-4	Bromodichloromethane	0.5	U	0.15	0.5	
10061-01-5	cis-1,3-Dichloropropene	1	U	0.4	1	
108-10-1	4-Methyl-2-pentanone	4	U	1	4	
108-88-3	Toluene	1	U	0.14	1	
10061-02-6	trans-1,3-Dichloropropene	1	U	0.3	1	
79-00-5	1,1,2-Trichloroethane	1	U	0.2	1	
127-18-4	Tetrachloroethene	0.5	U	0.21	0.5	
142-28-9	1,3-Dichloropropane	0.4	U	0.3	0.4	
591-78-6	2-Hexanone	4	U	0.48	4	
124-48-1	Dibromochloromethane	0.2	U	0.13	0.2	
106-93-4	1,2-Dibromoethane	1	U	0.11	1	
108-90-7	Chlorobenzene	0.5	U	0.16	0.5	
630-20-6	1,1,1,2-Tetrachloroethane	0.5	U	0.14	0.5	
100-41-4	Ethylbenzene	0.5	U	0.22	0.5	
179601-23-1	m,p-Xylene	0.4	U	0.23	0.4	
95-47-6	o-Xylene	0.5	U	0.5	0.5	
100-42-5	Styrene	1	U	0.12	1	
75-25-2	Bromoform	1	U	0.19	1	
98-82-8	Isopropylbenzene	0.5	U	0.14	0.5	
108-86-1	Bromobenzene	1	U	0.21	1	
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.13	1	
96-18-4	1,2,3-Trichloropropane	1	U	0.35	1	
103-65-1	n-Propylbenzene	1	U	0.14	1	
95-49-8	2-Chlorotoluene	1	U	0.25	1	
106-43-4	4-Chlorotoluene	1	U	0.15	1	

MARY

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract	t: Kokomo Dump / 2010101 / 101	KD-IDW-WATER-01
Lab Code: PEL Case No.	SAS No: SE	OG No.: 3503862
Matrix: WATER	Lab Sample ID: 350386214	Lab File ID 86214R.D
Sample wt/vol: 5 Units: ML.	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	and the second s
Level:(low/med) LOW	Date Analyzed: 09/02/11	Time: 1114
PercentSolids: 0 decanted:	Dilution Factor: 1	
Extraction: PURGETRAP	Station ID:	Method: <u>8260</u>
GPC Cleanup : (Y/N) pH:		
Column(1): DB-624 ID: 0.18 (r	nm)	

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
108-67-8	1,3,5-Trimethylbenzene	1	U	0.14	1	
98-06-6	tert-Butylbenzene	1	U	0.2	1	
95-63-6	1,2,4-Trimethylbenzene	1	U	0.13	1	
135-98-8	sec-Butylbenzene	1	U	0.1	1	
541-73-1	1,3-Dichlorobenzene	2	U	0.15	2	
106-46-7	1,4-Dichlorobenzene	3	U	0.15	3	
99-87-6	4-Isopropyitoluene	1	U	0.14	1	
104-51-8	n-Butylbenzene	1	U	0.16	1	
95-50-1	1,2-Dichlorobenzene	1	U	0.25	1	
96-12-8	1,2-Dibromo-3-chloropropane	2	U	1	2	
120-82-1	1,2,4-Trichlorobenzene	1	U	0.4	1	
87-68-3	Hexachlorobutadiene	0.5	U	0.36	0.5	
91-20-3	Naphthalene	5	U	0.5	5	
87-61-6	1,2,3-Trichlorobenzene	2	U	0.16	2	
1634-04-4	Methyl tert-butyl ether	1	U	0.5	1	

Form I

CONCENTRATION UNITS: UG/L

EPA Sample No.

TRIP-1 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 SAS No: SDG No.: 3503862 Lab Code: PEL Case No. Lab File ID 86215.D Lab Sample ID: 350386215 Matrix: WATER Sample wt/vol: 5 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Time: 1822 Date Analyzed: 08/30/11 0 decanted: PercentSolids: Dilution Factor: 1 Extraction: PURGETRAP Station ID: Method: 8260 GPC Cleanup : (Y/N) pH: Column(1): DB-624 ID: 0.18 (mm)

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
75-71-8	Dichlorodifluoromethane	1	U	0.17	1	
74-87-3	Chloromethane	1	U	0.32	1	
75-01-4	Vinyl chloride	1	U	0.18	1	
74-83-9	Bromomethane	1	U	0.43	1	
75-00-3	Chloroethane	1	U	0.72	1	
75-69-4	Trichlorofluoromethane	1	U	0.4	1	
75-35-4	1,1-Dichloroethene	0.5	U	0.19	0.5	
74-88-4	Methyl iodide	1	U	0.74	1	
75-15-0	Carbon disulfide	1	U	0.19	1	
75-09-2	Methylene chloride	5	U	0.66	5	
156-60-5	trans-1,2-Dichloroethene	0.5	U	0.33	0.5	
75-34-3	1,1-Dichloroethane	1	U	0.15	1	
67-64-1	Acetone	10	U	1.3	10	
594-20-7	2,2-Dichloropropane	1	U	0.6	1	
156-59-2	cis-1,2-Dichloroethene	0.5	U	0.19	0.5	
74-97-5	Bromochloromethane	1	U	0.17	1	
78-93-3	2-Butanone	4	U	2	4	
67-66-3	Chloroform	0.5	U	0.16	0.5	
71-55-6	1,1,1-Trichloroethane	1	U	0.14	1	
56-23-5	Carbon tetrachloride	0.5	U	0.14	0.5	
563-58-6	1,1-Dichloropropene	1	U	0.3	1	
71-43-2	Benzene	0.5	U	0.17	0.5	
107-06-2	1,2-Dichloroethane	0.5	U	0.15	0.5	
79-01-6	Trichloroethene	0.5	U	0.19	0.5	
108-05-4	Vinyl acetate	1	U	0.18	1	
78-87-5	1,2-Dichloropropane	1	U	0.15	1	

VOEW.

CONCENTRATION UNITS: UG/L

EPA Sample No. TRIP-1 Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Lab File ID 86215.D Matrix: WATER Lab Sample ID: 350386215 Date Received: 08/23/11 Sample wt/vol: 5 Units: ML Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 08/30/11 Time: 1822 decanted : PercentSolids: 0 Dilution Factor: 1

Extraction: PURGETRAP Station ID: Method: 8260

(mm) Column(1): DB-624 ID: 0.18

CONCENTRATION UNITS: UG/L

GPC Cleanup : (Y/N) pH:

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
74-95-3	Dibromomethane	1	U	0.4	1
75-27-4	Bromodichloromethane	0.5	U	0.15	0.5
10061-01-5	cis-1,3-Dichloropropene	1	U	0.4	1
108-10-1	4-Methyl-2-pentanone	4	U	1	4
108-88-3	Toluene	1	U	0.14	1
10061-02-6	trans-1,3-Dichloropropene	1	U	0.3	1
79-00-5	1,1,2-Trichloroethane	1	Ŭ	0.2	1
127-18-4	Tetrachloroethene	0.5	U	0.21	0.5
142-28-9	1,3-Dichloropropane	0.4	U	0.3	0.4
591-78-6	2-Hexanone	4	U	0.48	4
124-48-1	Dibromochloromethane	0.2	U	0.13	0.2
106-93-4	1,2-Dibromoethane	1	U	0.11	1
108-90-7	Chlorobenzene	0.5	U	0.16	0.5
630-20-6	1,1,1,2-Tetrachloroethane	0.5	U	0.14	0.5
100-41-4	Ethylbenzene	0.5	U	0.22	0.5
179601-23-1	m,p-Xylene	0.4	U	0.23	0.4
95-47-6	o-Xylene	0.5	U	0.5	0.5
100-42-5	Styrene	1	U	0.12	1
75-25-2	Bromoform	1	U	0.19	1
98-82-8	isopropylbenzene	0.5	U	0.14	0.5
108-86-1	Bromobenzene	1	U	0.21	1
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.13	1
96-18-4	1,2,3-Trichloropropane	1	U	0.35	1
103-65-1	n-Propylbenzene	1	U	0.14	1
95-49-8	2-Chlorotoluene	1	U	0.25	1
106-43-4	4-Chlorotoluene	1	U	0.15	1

EPA Sample No. TRIP-1 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code : PEL Case No. SAS No: SDG No.: 3503862 Matrix: WATER Lab Sample ID: 350386215 Lab File ID 86215.D Sample wt/vol: 5 Units: Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 08/30/11 Time: 1822 PercentSolids: 0 decanted ; Dilution Factor: 1 Extraction: **PURGETRAP** Station ID: Method: <u>8260</u> GPC Cleanup : (Y/N) pH:

Column(1): DB-624 ID: 0.18

UG/L

Methyl tert-butyl ether

CONCENTRATION UNITS:

CAS NO. ANALYTE RESULT Q MDL RL108-67-8 1,3,5-Trimethylbenzene 1 U 0.14 1 98-06-6 tert-Butylbenzene 1 U 0.2 1 95-63-6 1,2,4-Trimethylbenzene 1 U 0.13 1 135-98-8 sec-Butylbenzene 1 U 0.1 1 541-73-1 1,3-Dichlorobenzene 2 U 0.15 2 106-46-7 1,4-Dichlorobenzene 3 U 0.15 3 99-87-6 4-Isopropyltoluene 1 U 0.14 1 104-51-8 n-Butylbenzene 1 U 0.16 1 95-50-1 1,2-Dichlorobenzene 1 U 0.25 1 96-12-8 1,2-Dibromo-3-chloropropane 2 U 1 2 120-82-1 1,2,4-Trichlorobenzene 1 U 0.4 1 87-68-3 Hexachlorobutadiene 0.5 U 0.36 0.5 91-20-3 Naphthalene 5 IJ 0.5 5 87-61-6 1,2,3-Trichlorobenzene 2 U 0.16 2

U

0.5

1

(mm)

1

VIRY

1634-04-4

EPA Sample No.

KD-SB-1 16ft-16.5ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386201 Lab File ID 86201.D Sample wt/vol: 0.5 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 09/01/11 Time: 0354 decanted : PercentSolids: 0 Dilution Factor: 1 Extraction: PURGETRAP Station ID: Method: 8260 TCLP pH: GPC Cleanup : (Y/N) Column(1): DB-624 ID: 0.18 (mm)

CONCENTRATION UNITS: MG/L

TCLP Analysis

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
75-35-4	1,1-Dichloroethene	0.005	U	0.0019	0.005
107-06-2	1,2-Dichloroethane	0.005	U	0.0015	0.005
78-93-3	2-Butanone	0.04	U	0.02	0.04
71-43-2	Benzene	0.005	U	0.0017	0.005
56-23-5	Carbon tetrachloride	0.005	U	0.0014	0.005
108-90-7	Chlorobenzene	0.005	U	0.0016	0.005
67-66-3	Chloroform	0,005	U	0.0016	0.005
127-18-4	Tetrachloroethene	0.005	U	0.0021	0.005
79-01-6	Trichloroethene	0.005	U	0,0019	0.005
75-01-4	Vinyl chloride	0.01	U	0.0018	0.01

V&W

EPA Sample No.

KD-SB-2 11ft-12ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Case No. Lab Code: PEL SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386202 Lab File ID 86202.D Sample wt/vol: 0.5 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 09/01/11 Time: 0421 0 decanted: PercentSolids: Dilution Factor: 1 Extraction: PURGETRAP Station ID: Method: 8260 TCLP GPC Cleanup : (Y/N) pH: ID: 0.18 (mm) Column(1): DB-624

CONCENTRATION UNITS: MG/L

TCLP Analysis

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
75-35-4	1,1-Dichloroethene	0.005	U	0.0019	0.005	
107-06-2	1,2-Dichloroethane	0.005	U	0.0015	0.005	
78-93-3	2-Butanone	0.04	U	0.02	0.04	
71-43-2	Benzene	0.0025	J	0.0017	0.005	
56-23-5	Carbon tetrachloride	0.005	U	0.0014	0.005	
108-90-7	Chlorobenzene	0.005	U	0.0016	0.005	
67-66-3	Chloroform	0.005	U	0.0016	0.005	
127-18-4	Tetrachloroethene	0.005	U	0.0021	0.005	
79-01-6	Trichloroethene	0.0036	J	0.0019	0.005	
75-01-4	Vinyl chloride	0.01	U	0.0018	0.01	

WRY

EPA Sample No. KD-SB-6 3ft-4ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code : PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386210 Lab File ID 86210.D Sample wt/vol: 0.5 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Level:(low/med) LOW Date Analyzed: 09/01/11 Time: 0449 0 decanted: PercentSolids: Dilution Factor: 1 Extraction: PURGETRAP Station ID: Method: 8260 TCLP GPC Cleanup : (Y/N) pH: Column(1): DB-624 ID: 0.18 (mm)

CONCENTRATION UNITS: MG/L

TCLP Analysis

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
75-35-4	1,1-Dichloroethene	0.005	U	0.0019	0.005
107-06-2	1,2-Dichloroethane	0.005	U	0.0015	0.005
78-93-3	2-Butanone	0.04	U	0.02	0.04
71-43-2	Benzene	0.005	U	0.0017	0.005
56-23-5	Carbon tetrachloride	0.005	U	0.0014	0.005
108-90-7	Chlorobenzene	0.005	U	0.0016	0.005
67-66-3	Chloroform	0.005	Ŭ	0.0016	0.005
127-18-4	Tetrachloroethene	0.005	U	0.0021	0.005
79-01-6	Trichloroethene	0.005	U	0.0019	0.005
75-01-4	Vinyl chloride	0.01	U	0.0018	0.01

VEW

EPA Sample No. KD-SB-9 3ft-4ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Lab File ID 86211.D Lab Sample ID: 350386211 Sample wt/vol: 0.5 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 5 Date Extracted: Date Analyzed: 09/01/11 Time: 0516

PercentSolids: 0 decanted : Dilution Factor: 1

Method: 8260 TCLP

Extraction: PURGETRAP Station ID:

GPC Cleanup : (Y/N) pH: Column(1): DB-624 ID: 0.18 (mm)

Matrix: SOIL

Level:(low/med) LOW

CONCENTRATION UNITS: MG/L **TCLP Analysis**

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
75-35-4	1,1-Dichloroethene	0.005	U	0.0019	0.005	
107-06-2	1,2-Dichloroethane	0.005	U	0.0015	0.005	
78-93-3	2-Butanone	0.04	U	0.02	0.04	
71-43-2	Benzene	0.005	U	0.0017	0.005	
56-23-5	Carbon tetrachloride	0.005	U	0.0014	0.005	
108-90-7	Chlorobenzene	0.005	U	0.0016	0.005	
67-66-3	Chloroform	0.005	U	0.0016	0.005	
127-18-4	Tetrachloroethene	0.005	U	0.0021	0.005	
79-01-6	Trichloroethene	0.005	U	0.0019	0.005	
75-01-4	Vinyl chloride	0.01	U	0.0018	0.01	

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-DISP-SOIL-01
Lab Code: PEL Case No.	SAS No: SE	OG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386213	Lab File ID 86213.D
Sample wt/vol: 0.5 Units: ML	Date Received: 08/23/11	
Concentrated Extract Volume: 5	Date Extracted:	
Levei:(low/med) LOW	Date Analyzed: 09/01/11	Time: 0544
PercentSolids: 0 decanted :	Dilution Factor: 1	
Extraction: PURGETRAP	Station ID:	Method: 8260 TCLP
GPC Cleanup : (Y/N) pH:		
Column(1): DB-624 ID: 0.18 (mm)	
CONCENTRATION UNITS: MG/L		TCLP Analysis

CAS NO. ANALYTE RESULT Q MDL RLU 75-35-4 1,1-Dichloroethene 0.005 0.0019 0.005 0.005 U 0.0015 0.005 107-06-2 1,2-Dichloroethane 0.04 0.04 78-93-3 2-Butanone U 0.02 0.005 71-43-2 Benzene 0.005 U 0.0017 56-23-5 Carbon tetrachloride 0.005 U 0.0014 0.005 Chlorobenzene 0.005 U 0.0016 0.005 108-90-7 67-66-3 Chloroform 0.005 Ų 0.0016 0.005 0.005 0.0021 0.005 127-18-4 Tetrachloroethene U

U

U

0.0019

0.0018

0.005

0.01

0.005

0.01

880911 1740 Form I

Trichloroethene

Vinyl chloride

79-01-6

75-01-4

MRY

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 KD-SB-1 16ft-16.5ft

Lab Code: PEL Case No. SAS No: SDG No.: 3503862

Matrix: SOIL Lab Sample ID: 350386201 Lab File ID 86201D10.D

Sample wt/vol: 25.43 Units: G Date Received: 08/23/11

Concentrated Extract Volume: 1 Date Extracted: 08/25/11

Level:(low/med) LOW Date Analyzed: 08/27/11 Time: 0548

PercentSolids: 95.2 decanted: Dilution Factor: 10

Extraction: OTHER Station ID: Method: 8270

GPC Cleanup : (Y/N) N pH:

Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
62-75-9	N-Nitrosodimethylamine	2200	υJ	586	2200
62-53-3	Aniline	2230	U	636	2230
111-44-4	Bis(2-chloroethyl)ether	2230	U	554	2230
108-95-2	Phenol	11000	U	537	11000
95-57-8	2-Chlorophenol	2230	U	570	2230
541-73-1	1,3-Dichlorobenzene	2230	U	504	2230
106-46-7	1,4-Dichlorobenzene	2230	U	520	2230
95-50-1	1,2-Dichlorobenzene	2230	U	471	2230
100-51-6	Benzyl alcohol	5510	U	760	5510
108-60-1	2,2'-Oxybis(1-chloropropane)	2230	U	1820	2230
95-48-7	2-Methylphenol	2200	U	793	2200
67-72-1	Hexachioroethane	2230	Ŭ	413	2230
621-64-7	N-Nitroso-di-n-propylamine	2230	U	504	2230
106-44-5	4-Methylphenol	2230	U	487	2230
98-95-3	Nitrobenzene	2230	U	496	2230
78-59-1	Isophorone	2230	U	487	2230
88-75-5	2-Nitrophenol	2230	U	595	2230
105-67-9	2,4-Dimethylphenol	2200	U	471	2200
65-85-0	Benzoic acid	5510	U	2230	5510
111-91-1	Bis(2-chloroethoxy)methane	2200	U	471	2200
120-83-2	2,4-Dichlorophenol	2200	U	620	2200
120-82-1	1,2,4-Trichlorobenzene	2230	U	479	2230
91-20-3	Naphthalene	2230	U	529	2230
106-47-8	4-Chloroaniline	2230	U	520	2230
91-57-6	2-Methylnaphthalene	2230	U	479	2230
87-68-3	Hexachlorobutadiene	2230	U	479	2230

WW

EPA Sample No. KD-SB-1 16ft-16.5ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386201 Lab File ID 86201D10.D Units: G Sample wt/vol: 25.43 Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/27/11 Time: 0548 decanted : PercentSolids: 95.2 Dilution Factor: 10 Extraction: OTHER Station ID: Method: 8270 GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
59-50-7	4-Chloro-3-methylphenol	2230	U	463	2230
90-12-0	1-Methylnaphthalene	2230	U	512	2230
77-47-4	Hexachlorocyclopentadiene	5510	U	330	5510
88-06-2	2,4,6-Trichlorophenol	2200	U	562	2200
95-95-4	2,4,5-Trichlorophenol	2200	U	611	2200
91-58-7	2-Chloronaphthalene	2230	U	551	2230
88-74-4	2-Nitroaniline	2230	U	471	2230
208-96-8	Acenaphthylene	2230	U	454	2230
131-11-3	Dimethylphthalate	2230	U	487	2230
606-20-2	2,6-Dinitrotoluene	2230	U	413	2230
83-32-9	Acenaphthene	2230	U	405	2230
99-09-2	3-Nitroaniline	2200	U	661	2200
51-28-5	2,4-Dinitrophenol	11100	U	1820	11100
132-64-9	Dibenzofuran	2230	U	446	2230
121-14-2	2,4-Dinitrotoluene	2230	U	405	2230
100-02-7	4-Nitrophenol	5510	U	438	5510
86-73-7	Fluorene	2230	U	421	2230
7005-72-3	4-Chlorophenyl-phenylether	2230	U	421	2230
84-66-2	Diethylphthalate	2230	U	421	2230
100-01-6	4-Nitroaniline	2200	Ü	727	2200
534-52-1	4,6-Dinitro-2-methylphenol	2230	U	2200	2230
86-30-6	N-Nitrosodiphenylamine	2200	U	520	2200
101-55-3	4-Bromophenyl-phenylether	2230	U	405	2230
118-74-1	Hexachlorobenzene	2200	U	438	2200
87-86-5	Pentachlorophenol	2230	U	1100	2230
85-01-8	Phenanthrene	1190	J	463	2230

\Q\

EPA Sample No.

KD-SB-1 16ft-16.5ft Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. Lab Code: PEL SDG No.: 3503862 Case No. SAS No: SOIL Matrix: Sample wt/vol: 25.43 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/25/11 Level:(low/med) LOW Time: 0548 Date Analyzed: 08/27/11 decanted : PercentSolids: 95.2 Dilution Factor: 10 Extraction: OTHER Station ID: Method: 8270 pH: GPC Cleanup ; (Y/N) Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

080911 1740

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
120-12-7	Anthracene	2230	IJ	496	2230
84-74-2	Di-n-butylphthalate	2230	Ü	363	2230
206-44-0	Fluoranthene	2230	U	396	2230
129-00-0	Pyrene	2230	U	760	2230
92-87-5	Benzidine	5540	U	4960	5540
85-68-7	Butylbenzylphthalate	2230	U	520	2230
91-94-1	3,3'-Dichlorobenzidine	2230	U	487	2230
56-55-3	Benzo(a)anthracene	2230	U	471	2230
218-01-9	Chrysene	2200	U	281	2200
117-81-7	Bis(2-ethylhexyl)phthalate	2230	U	686	2230
117-84-0	Di-n-octylphthalate	2230	U	479	2230
205-99-2	Benzo(b)fluoranthene	2230	U	520	2230
207-08-9	Benzo(k)fluoranthene	2230	U	471	2230
50-32-8	Benzo(a)pyrene	2230	U	355	2230
193-39-5	Indeno(1,2,3-cd)pyrene	2230	U	430	2230
53-70-3	Dibenzo(a,h)anthracene	2230	U	339	2230
191-24-2	Benzo(g,h,i)perylene	2230	U	330	2230

VDW

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-2 11ft-12ft
Lab Code: PEL Case No.	SAS No:	SDG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386202	Lab File ID 86202D10.D
Sample wt/vol: 25.34 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 1	Date Extracted: 08/25/11	
Level:(low/med) LOW	Date Analyzed: 08/27/11	Time: 0618
PercentSolids: 74.4 decanted :	Dilution Factor: 10	
Extraction: OTHER	Station ID:	Method: <u>8270</u>
GPC Cleanup : (Y/N) N pH:		
Column(1): HPMS-5 ID: 0.25 (mm)	
CONCENTRATION UNITS: UG/KG		

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
62-75-9	N-Nitrosodimethylamine	2830	U ゴ	753	2830
62-53-3	Aniline	2860	U	817	2860
111-44-4	Bis(2-chloroethyl)ether	2860	U	711	2860
108-95-2	Phenol	14200	U	690	14200
95-57-8	2-Chlorophenol	2860	U	732	2860
541-73-1	1,3-Dichlorobenzene	2860	U	647	2860
106-46-7	1,4-Dichlorobenzene	2860	U	668	2860
95-50-1	1,2-Dichlorobenzene	2860	U	605	2860
100-51-6	Benzyl alcohol	7080	U	976	7080
108-60-1	2,2'-Oxybis(1-chloropropane)	2860	U	2330	2860
95-48-7	2-Methylphenol	2830	U	1020	2830
67-72-1	Hexachloroethane	2860	U	530	2860
621-64-7	N-Nitroso-di-n-propylamine	2860	U	647	2860
106-44-5	4-Methylphenol	2860	U	626	2860
98-95-3	Nitrobenzene	2860	U	636	2860
78-59-1	isophorone	2860	U	626	2860
88-75-5	2-Nitrophenol	2860	Ü	764	2860
105-67-9	2,4-Dimethylphenol	2830	U	605	2830
65-85-0	Benzoic acid	7080	U	2860	7080
111-91-1	Bis(2-chloroethoxy)methane	2830	U	605	2830
120-83-2	2,4-Dichlorophenol	2830	U	796	2830
120-82-1	1,2,4-Trichlorobenzene	2860	U	615	2860
91-20-3	Naphthalene	2020	J	679	2860
106-47-8	4-Chloroaniline	2860	U	668	2860
91-57-6	2-Methylnaphthalene	691	J	615	2860
87-68-3	Hexachlorobutadiene	2860	U	615	2860

Form I

EPA Sample No. KD-SB-2 11ft-12ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386202 Lab File ID 86202D10.D Sample wt/vol: 25.34 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/27/11 Time: 0618 decanted : PercentSolids: 74.4 Dilution Factor: 10 Extraction: OTHER Station ID: Method: 8270 GPC Cleanup : (Y/N) pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
59-50-7	4-Chloro-3-methylphenol	2860	U	594	2860
90-12-0	1-Methylnaphthalene	2860	U	658	2860
77-47-4	Hexachlorocyclopentadiene	7080	U	424	7080
88-06-2	2,4,6-Trichlorophenol	2830	U	721	2830
95-95-4	2,4,5-Trichlorophenol	2830	U	785	2830
91-58-7	2-Chloronaphthalene	2860	U	708	2860
88-74-4	2-Nitroaniline	2860	U	605	2860
208-96-8	Acenaphthylene	2860	U	583	2860
131-11-3	Dimethylphthalate	2860	U	626	2860
606-20-2	2,6-Dinitrotoluene	2860	U	530	2860
83-32-9	Acenaphthene	2860	U	520	2860
99-09-2	3-Nitroaniline	2830	U	849	2830
51-28-5	2,4-Dinitrophenol	14200	U	2330	14200
132-64-9	Dibenzofuran	2860	U	573	2860
121-14-2	2,4-Dinitrotoluene	2860	U	520	2860
100-02-7	4-Nitrophenol	7080	U	562	7080
86-73-7	Fluorene	2860	U	541	2860
7005-72-3	4-Chlorophenyl-phenylether	2860	U	541	2860
84-66-2	Diethylphthalate	2860	U	541	2860
100-01-6	4-Nitroaniline	2830	U	934	2830
534-52-1	4,6-Dinitro-2-methylphenol	2860	U	2820	2860
86-30-6	N-Nitrosodiphenylamine	2830	U	668	2830
101-55-3	4-Bromophenyl-phenylether	2860	U	520	2860
118-74-1	Hexachlorobenzene	2830	U	562	2830
87-86-5	Pentachlorophenol	2860	U	1410	2860
85-01-8	Phenanthrene	2320	J	594	2860

V&M

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-2 11ft-12ft
Lab Code: PEL Case No.	SAS No: SI	OG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386202	Lab File ID 86202D10.D
Sample wt/vol: 25.34 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 1	Date Extracted: 08/25/11	
Level:(low/med) LOW	Date Analyzed: 08/27/11	Time: 0618
PercentSolids: 74.4 decanted:	Dilution Factor: 10	
Extraction: OTHER	Station ID:	Method: <u>8270</u>
GPC Cleanup : (Y/N) N pH:		
Column(1): HPMS-5 ID: 0.25 (mm)	

CAS NO.	ANALYTE	RESULT	Q	MDL.	RL
120-12-7	Anthracene	2860	U	636	2860
84-74-2	Di-n-butylphthalate	2860	U	467	2860
206-44-0	Fluoranthene	1900	J	509	2860
129-00-0	Pyrene	1620	j	976	2860
92-87-5	Benzidine	7110	U	6360	7110
85-68-7	Butylbenzylphthalate	2860	Ú	668	2860
91-94-1	3,3'-Dichlorobenzidine	2860	U	626	2860
56-55-3	Benzo(a)anthracene	732	J	605	2860
218-01-9	Chrysene	757	J	361	2830
117-81-7	Bis(2-ethylhexyl)phthalate	3830		880	2860
117-84-0	Di-n-octylphthalate	2860	U	615	2860
205-99-2	Benzo(b)fluoranthene	2860	U	668	2860
207-08-9	Benzo(k)fluoranthene	2860	U	605	2860
50-32-8	Benzo(a)pyrene	2860	U	456	2860
193-39-5	Indeno(1,2,3-cd)pyrene	2860	U	552	2860
53-70-3	Dibenzo(a,h)anthracene	2860	U	435	2860
191-24-2	Benzo(g,h,i)perylene	523	J	424	2860

WEW

080911 1740

CONCENTRATION UNITS: UG/KG

EPA Sample No. KD-SB-6 3ft-4ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Case No. Lab Code: PEL SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386210 Lab File ID 86210D5.D Sample wt/vol: 25.42 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1531 PercentSolids: 75.2 decanted : Dilution Factor: 5 Extraction: OTHER Station ID: Method: 8270 GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
62-75-9	N-Nitrosodimethylamine	1400	しゴ	371	1400
62-53-3	Aniline	1410	U	403	1410
111-44-4	Bis(2-chloroethyl)ether	1410	U	350	1410
108-95-2	Phenol	6980	U	340	6980
95-57-8	2-Chlorophenol	1410	U	361	1410
541-73-1	1,3-Dichlorobenzene	1410	U	319	1410
106-46-7	1,4-Dichlorobenzene	1410	U	330	1410
95-50-1	1,2-Dichlorobenzene	1410	U	298	1410
100-51-6	Benzyl alcohol	3490	Ŭ	481	3490
108-60-1	2,2'-Oxybis(1-chloropropane)	1410	U	1150	1410
95-48-7	2-Methylphenol	1400	U	502	1400
67-72-1	Hexachloroethane	1410	U	262	1410
621-64-7	N-Nitroso-di-n-propylamine	1410	U	319	1410
106-44-5	4-Methylphenol	1410	U	309	1410
98-95-3	Nitrobenzene	1410	U	314	1410
78-59-1	Isophorone	1410	U	309	1410
88-75-5	2-Nitrophenol	1410	Ù	377	1410
105-67-9	2,4-Dimethylphenol	1400	U	298	1400
65-85-0	Benzoic acid	3490	U	1410	3490
111-91-1	Bis(2-chloroethoxy)methane	1400	U	298	1400
120-83-2	2,4-Dichlorophenol	1400	U	392	1400
120-82-1	1,2,4-Trichlorobenzene	1410	U	303	1410
91-20-3	Naphthalene	1410	U	335	1410
106-47-8	4-Chloroaniline	1410	U	330	1410
91-57-6	2-Methylnaphthalene	1410	U	303	1410
87-68-3	Hexachlorobutadiene	1410	U	303	1410

VIEW

EPA Sample No. KD-SB-6 3ft-4ft Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Lab File ID 86210D5.D Matrix: SOIL Lab Sample ID: 350386210 Sample wt/vol: 25.42 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1531 PercentSolids: 75.2 decanted : Dilution Factor: 5 Extraction: OTHER Station ID: Method: 8270 GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

			Q	MDL	RL
59-50-7	4-Chloro-3-methylphenol	1410	U	293	1410
90-12-0	1-Methylnaphthalene	1410	U	324	1410
77-47-4	Hexachlorocyclopentadiene	3490	U	209	3490
88-06-2	2,4,6-Trichlorophenol	1400	U	356	1400
95-95-4	2,4,5-Trichlorophenol	1400	U	387	1400
91-58-7	2-Chloronaphthalene	1410	U	349	1410
88-74-4	2-Nitroaniline	1410	U	298	1410
208-96-8	Acenaphthylene	1410	U	288	1410
131-11-3	Dimethylphthalate	1410	U	309	1410
606-20-2	2,6-Dinitrotoluene	1410	U	262	1410
83-32-9	Acenaphthene	1410	U	256	1410
99-09-2	3-Nitroaniline	1400	U	418	1400
51-28-5	2,4-Dinitrophenol	7010	U	1150	7010
132-64-9	Dibenzofuran	1410	U	282	1410
121-14-2	2,4-Dinitrotoluene	1410	U	256	1410
100-02-7	4-Nitrophenol	3490	U	277	3490
86-73-7	Fluorene	1410	U	267	1410
7005-72-3	4-Chlorophenyl-phenylether	1410	U	267	1410
84-66-2	Diethylphthalate	1410	U	267	1410
100-01-6	4-Nitroaniline	1400	U	460	1400
534-52-1	4,6-Dinitro-2-methylphenol	1410	U	1390	1410
86-30-6	N-Nitrosodiphenylamine	1400	U	330	1400
101-55-3	4-Bromophenyl-phenylether	1410	 ₽	256	1410
118-74-1	Hexachlorobenzene	1400	U	277	1400
87-86-5	Pentachlorophenol	1410	U	696	1410
85-01-8	Phenanthrene	1410	U	293	1410

(DDM_

EPA Sample No. KD-SB-6 3ft-4ft Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386210 Lab File ID 86210D5.D Sample wt/vol: 25.42 Date Received: 08/23/11 Units: G Concentrated Extract Volume: 1 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1531 PercentSolids: 75.2 decanted : Dilution Factor: 5 Extraction: OTHER Station ID: Method: 8270 pH: GPC Cleanup : (Y/N)

Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
120-12-7	Anthracene	1410	Ú	314	1410	
84-74-2	Di-n-butylphthalate	1410	U	230	1410	
206-44-0	Fluoranthene	1410	U	251	1410	
129-00-0	Pyrene	1410	U	481	1410	
92-87-5	Benzidine	3500	U	3140	3500	
85-68-7	Butylbenzylphthalate	1410	U	330	1410	
91-94-1	3,3'-Dichlorobenzidine	1410	U	309	1410	
56-55-3	Benzo(a)anthracene	1410	U	298	1410	
218-01-9	Chrysene	1400	U	178	1400	
117-81-7	Bis(2-ethylhexyl)phthalate	1410	U	434	1410	
117-84-0	Di-n-octylphthalate	1410	U	303	1410	
205-99-2	Benzo(b)fluoranthene	1410	U	330	1410	
207-08-9	Benzo(k)fluoranthene	1410	U	298	1410	
50-32-8	Benzo(a)pyrene	1410	U	225	1410	
193-39-5	Indeno(1,2,3-cd)pyrene	1410	U	272	1410	
53-70-3	Dibenzo(a,h)anthracene	1410	U	214	1410	
191-24-2	Benzo(g,h,i)perylene	1410	U	209	1410	

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-9 3ft-4ft
Lab Code : PEL Case No.	SAS No:	DG No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386211	Lab File ID 86211D5.D
Sample wt/vol: 25.27 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 1	Date Extracted: 08/25/11	
Level:(low/med) LOW	Date Analyzed: 09/02/11	Time: 1603
PercentSolids: 74.4 decanted :	Dilution Factor: 5	
Extraction: OTHER	Station ID:	Method: <u>8270</u>
GPC Cleanup : (Y/N) N pH:		
Column(1): HPMS-5 ID: 0.25 (mm	n)	
CONCENTRATION UNITS: UG/KG		

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
62-75-9	N-Nitrosodimethylamine	1420	UJ	378	1420	
62-53-3	Aniline	1440	U	410	1440	
111-44-4	Bis(2-chloroethyl)ether	1440	Ü	356	1440	
108-95-2	Phenol	7100	U	346	7100	
95-57-8	2-Chlorophenol	1440	U	367	1440	
541-73-1	1,3-Dichlorobenzene	1440	U	324	1440	
106-46-7	1,4-Dichlorobenzene	1440	U	335	1440	
95-50-1	1,2-Dichlorobenzene	1440	U	303	1440	
100-51-6	Benzyl alcohol	3550	U	489	3550	
108-60-1	2,2'-Oxybis(1-chloropropane)	1440	U	1170	1440	
95-48-7	2-Methylphenol	1420	U	511	1420	
67-72-1	Hexachloroethane	1440	U	266	1440	
621-64-7	N-Nitroso-di-n-propylamine	1440	U	324	1440	
106-44-5	4-Methylphenol	1440	U	314	1440	
98-95-3	Nitrobenzene	1440	U	319	1440	
78-59-1	Isophorone	1440	U	314	1440	
88-75-5	2-Nitrophenol	1440	U	383	1440	
105-67-9	2.4-Dimethylphenol	1420	Ü	303	1420	
65-85-0	Benzoic acid	3550	U	1440	3550	
111-91-1	Bis(2-chloroethoxy)methane	1420	U	303	1420	
120-83-2	2,4-Dichlorophenol	1420	U	399	1420	
120-82-1	1,2,4-Trichlorobenzene	1440	U	308	1440	
91-20-3	Naphthalene	1440	U	340	1440	
106-47-8	4-Chloroaniline	1440	U	335	1440	
91-57-6	2-Methylnaphthalene	1440	U	308	1440	
87-68-3	Hexachlorobutadiene	1440	U	308	1440	

Form I

KD-SB-9 3ft-4ft Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. SDG No.: 3503862 Case No. SAS No: Lab Code: PEL Lab File ID 86211D5.D Lab Sample ID: 350386211 Matrix: SOIL Date Received: 08/23/11 Sample wt/vol: 25.27 Units: G Concentrated Extract Volume: 1 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1603 PercentSolids: 74.4 decanted : Dilution Factor: 5 Extraction: OTHER Method: 8270 Station ID: GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
59-50-7	4-Chloro-3-methylphenol	1440	U	298	1440
90-12-0	1-Methylnaphthalene	1440	U	330	1440
77-47-4	Hexachlorocyclopentadiene	3550	U	213	3550
88-06-2	2,4,6-Trichlorophenol	1420	U	362	1420
95-95-4	2,4,5-Trichlorophenol	1420	U	394	1420
91-58-7	2-Chloronaphthalene	1440	U	355	1440
88-74-4	2-Nitroaniline	1440	U	303	1440
208-96-8	Acenaphthylene	1440	U	292	1440
131-11-3	Dimethylphthalate	1440	ับ	314	1440
606-20-2	2,6-Dinitrotoluene	1440	U	266	1440
83-32-9	Acenaphthene	1440	U	261	1440
99-09-2	3-Nitroaniline	1420	U	426	1420
51-28-5	2,4-Dinitrophenol	7130	Ü	1170	7130
132-64-9	Dibenzofuran	1440	U	287	1440
121-14-2	2,4-Dinitrotoluene	1440	U	261	1440
100-02-7	4-Nitrophenol	3550	U	282	3550
86-73-7	Fluorene	1440	U	271	1440
7005-72-3	4-Chlorophenyl-phenylether	1440	U	271	1440
84-66-2	Diethylphthalate	1440	U	271	1440
100-01-6	4-Nitroaniline	1420	U	468	1420
534-52-1	4,6-Dinitro-2-methylphenol	1440	U	1410	1440
86-30-6	N-Nitrosodiphenylamine	1420	Ų	335	1420
101-55-3	4-Bromophenyl-phenylether	1440	U	261	1440
118-74-1	Hexachlorobenzene	1420	U	282	1420
87-86-5	Pentachlorophenol	1440	U	707	1440
85-01-8	Phenanthrene	1440	U	298	1440

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-9 3ft-4ft
Lab Code: PEL Case No.	SAS No: SD	G No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386211	Lab File ID 86211D5.D
Sample wt/vol: 25.27 Units: G	Date Received: 08/23/11	
Concentrated Extract Volume: 1	Date Extracted: 08/25/11	
Level:(low/med) LOW	Date Analyzed: 09/02/11	Time: 1603
PercentSolids: 74.4 decanted:	Dilution Factor: 5	
Extraction: OTHER	Station ID:	Method: <u>8270</u>
GPC Cleanup : (Y/N) N pH:		
Column(1): HPMS-5 ID: 0.25 (mn	n)	
CONCENTRATION UNITS: UGIKG		

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
120-12-7	Anthracene	1440	U	319	1440	
84-74-2	Di-n-butylphthalate	1440	U	234	1440	
206-44-0	Fluoranthene	1440	U	255	1440	
129-00-0	Pyrene	1440	U	489	1440	
92-87-5	Benzidine	3560	U	3190	3560	
85-68-7	Butylbenzylphthalate	1440	U	335	1440	
91-94-1	3,3'-Dichlorobenzidine	1440	υ	314	1440	
56-55-3	Benzo(a)anthracene	1440	U	303	1440	
218-01-9	Chrysene	1420	U	181	1420	
117-81-7	Bis(2-ethylhexyl)phthalate	1440	U	441	1440	
117-84-0	Di-n-octylphthalate	1440	U	308	1440	
205-99-2	Benzo(b)fluoranthene	1440	U	335	1440	
207-08-9	Benzo(k)fluoranthene	1440	U	303	1440	
50-32-8	Benzo(a)pyrene	1440	U	229	1440	
193-39-5	Indeno(1,2,3-cd)pyrene	1440	U	276	1440	
53-70-3	Dibenzo(a,h)anthracene	1440	U	218	1440	
191-24-2	Benzo(g,h,i)perylene	1440	U	213	1440	

(Dav-

G60911 1748 Form

EPA Sample No.

KD-IDW-WATER-01 Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. SAS No: SDG No.: 3503862 Lab Code : PEL Case No. Matrix: WATER Lab Sample ID: 350386214 Lab File ID 86214D2.D Sample wt/vol: 980 Units: Date Received: 08/23/11 ML Concentrated Extract Volume: Date Extracted: 08/24/11 Level:(low/med) LOW 1520 Date Analyzed: 09/07/11 Time: PercentSolids: 0 decanted: Dilution Factor: 2 Extraction: SEPF Station ID: Method: 8270 GPC Cleanup : (Y/N) pH: ID: 0.25 Column(1): HPMS-5 (mm)

RLCAS NO. **ANALYTE** RESULT Q MDL N-Nitrosodimethylamine 8.2 U 4.5 8.2 62-75-9 8.2 5.7 8.2 U 62-53-3 Aniline 8.2 111-44-4 Bis(2-chloroethyl)ether 8.2 U 6.1 3.5 8.2 108-95-2 Phenol 4.4 J 5.9 8.2 8.2 U 95-57-8 2-Chlorophenol 5.5 8.2 541-73-1 1,3-Dichlorobenzene 8.2 U 8.2 8.2 U 5.5 106-46-7 1,4-Dichlorobenzene 8.2 5.3 95-50-1 1,2-Dichlorobenzene 8.2 U 20.4 100-51-6 20.4 U 6.3 Benzyl alcohol 8.2 108-60-1 2,2'-Oxybis(1-chloropropane) 8.2 U 6.7 8.2 2-Methylphenol 8.2 U 5.3 95-48-7 8.2 Hexachloroethane 8.2 U 5.3 67-72-1 8.2 6.1 8.2 U 621-64-7 N-Nitroso-di-n-propylamine 20.4 106-44-5 4-Methylphenol 20.4 U 12.4 8.2 U 2 8.2 98-95-3 Nitrobenzene 8.2 78-59-1 Isophorone 8.2 7.8 8.2 1.6 8.2 U 88-75-5 2-Nitrophenol 8.2 4.7 8.2 2,4-Dimethylphenol U 105-67-9 102 28.6 65-85-0 Benzoic acid 102 U 8.2 U 7.1 8.2 Bis(2-chloroethoxy)methane 111-91-1 8.2 120-83-2 2,4-Dichlorophenol 8.2 IJ 6.3 8.2 U 5.3 8.2 120-82-1 1,2,4-Trichlorobenzene 8.2 8.2 5.7 91-20-3 Naphthalene U 8.2 8.2 U 6.1 106-47-8 4-Chloroaniline 8.2 91-57-6 2-Methylnaphthalene 8.2 U 5.7 8.2 U 5.1 8.2 87-68-3 Hexachlorobutadiene

(95W-

UG/L

CONCENTRATION UNITS:

EPA Sample No.

Lab Name: Spectrum Analytical, Inc. Contrac	et: Kokomo Dump / 2010101 / 101	KD-IDW-WATER-01
Lab Code : PEL Case No.	SAS No: SE	OG No.: 3503862
Matrix: WATER	Lab Sample ID: 350386214	Lab File ID 86214D2.D
Sample wt/vol: 980 Units: ML	Date Received: 08/23/11	
Concentrated Extract Volume: 1	Date Extracted: 08/24/11	
Level:(low/med) LOW	Date Analyzed: 09/07/11	Time: 1520
PercentSolids: 0 decanted:	Dilution Factor: 2	
Extraction: SEPF	Station ID:	Method: <u>8270</u>
GPC Cleanup : (Y/N) N pH:		
Column(1): HPMS-5 ID: 0.25 (r	nm)	
CONCENTRATION UNITS: UG/L		

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
59-50-7	4-Chloro-3-methylphenol	8.2	U	5.5	8.2
90-12-0	1-Methylnaphthalene	8.2	U	5.5	8.2
77-47-4	Hexachlorocyclopentadiene	8.2	U	1.7	8.2
88-06-2	2,4,6-Trichlorophenol	8.2	U	1.7	8.2
95-95-4	2,4,5-Trichlorophenol	8.2	U	6.9	8.2
91-58-7	2-Chloronaphthalene	8.2	U	5.7	8.2
88-74-4	2-Nitroaniline	8.2	U	6.1	8.2
208-96-8	Acenaphthylene	8.2	U	6.1	8.2
131-11-3	Dimethylphthalate	8.2	U	6.1	8.2
606-20-2	2,6-Dinitrotoluene	8.2	U	5.7	8.2
83-32-9	Acenaphthene	8.2	U	5.7	8.2
99-09-2	3-Nitroaniline	8.2	U	5.7	8.2
51-28-5	2,4-Dinitrophenol	40.8	UJ	11.4	40.8
132-64-9	Dibenzofuran	8.2	U	5.5	8.2
121-14-2	2,4-Dinitrotoluene	8.2	U	5.7	8.2
100-02-7	4-Nitrophenol	8.2	U	8.2	8.2
86-73-7	Fluorene	8.2	U	5.9	8.2
7005-72-3	4-Chlorophenyl-phenylether	8.2	U	5.1	8.2
84-66-2	Diethylphthalate	8.2	U	5.7	8.2
100-01-6	4-Nitroaniline	8.2	U	2.6	8.2
534-52-1	4,6-Dinitro-2-methylphenol	8.2	U	8.2	8.2
86-30-6	N-Nitrosodiphenylamine	8.2	U	6.9	8.2
101-55-3	4-Bromophenyl-phenylether	8.2	Ü	4.7	8.2
118-74-1	Hexachlorobenzene	8.2	U	0.84	8.2
87-86-5	Pentachlorophenol	20.4	υ	2.8	20.4
85-01-8	Phenanthrene	8.2	U	5.7	8.2

MRY

EPA Sample No.

KD-IDW-WATER-01 Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. SAS No: SDG No.: 3503862 Lab Code: PEL Case No. Matrix: Lab Sample ID: 350386214 Lab File ID 86214D2.D WATER Sample wt/vol: 980 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/24/11 Level:(low/med) LOW Date Analyzed: 09/07/11 Time: 1520 PercentSolids: 0 decanted: Dilution Factor: 2 Extraction: SEPF Station ID: Method: 8270 GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
120-12-7	Anthracene	8.2	U	5.7	8.2
84-74-2	Di-n-butylphthalate	2	یا ۳۳لر	1.8	8.2
206-44-0	Fluoranthene	8.2	Ų	5.7	8.2
129-00-0	Pyrene	8.2	U	2.4	8.2
92-87-5	Benzidine	40.8	U	40.8	40.8
85-68-7	Butylbenzylphthalate	8.2	U	6.1	8.2
91-94-1	3,3'-Dichlorobenzidine	8.2	U	5.5	8.2
56-55-3	Benzo(a)anthracene	8.2	U	5.3	8.2
218-01-9	Chrysene	8.2	U	5.9	8.2
117-81-7	Bis(2-ethylhexyl)phthalate	119	₽ =	9	10.2
117-84-0	Di-n-octylphthalate	8.2	U	2.2	8.2
205-99-2	Benzo(b)fluoranthene	8.2	U	5.3	8.2
207-08-9	Benzo(k)fluoranthene	8.2	U	5.9	8.2
50-32-8	Benzo(a)pyrene	8.2	υ	5.7	8.2
193-39-5	Indeno(1,2,3-cd)pyrene	8.2	U	3.3	8.2
53-70-3	Dibenzo(a,h)anthracene	8.2	U	2.4	8.2
191-24-2	Benzo(g,h,i)perylene	8.2	U	5.3	8.2

Am

650911 1746 Form

CONCENTRATION UNITS: UG/L

EPA Sample No. KD-SB-1 16ft-16.5ft Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. SDG No.: 3503862 SAS No: Lab Code: PEL Case No. Lab File ID 86201T.D Matrix: SOIL Lab Sample ID: 350386201 Units: ML Sample wt/vol: 440 Date Received: 08/23/11 Date Extracted: 08/26/11 Concentrated Extract Volume: 1 Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1214 PercentSolids: decanted : 0 Dilution Factor: 1 Extraction: SEPF Method: 8270 TCLP Station ID: GPC Cleanup : (Y/N) N pH: ID: 0.25 (mm) Column(1): HPMS-5

CONCENTRATION UNITS: MG/L

TCLP Analysis

CAS NO.	ANALYTE	RESULT Q		MDL	RL
110-86-1	Pyridine	0.00909	U	0.00477	0.00909
106-46-7	1,4-Dichlorobenzene	0.00909	U	0.00614	0.00909
95-48-7	2-Methylphenol	0.00909	U	0.00591	0.00909
67-72-1	Hexachloroethane	0.00909	U	0.00591	0.00909
106-44-5	4-Methylphenol	0.0227	Ú	0.0139	0.0227
98-95-3	Nitrobenzene	0.00909	U	0.00227	0.00909
37-68-3	Hexachlorobutadiene	0.00909	U	0.00568	0.00909
88-06-2	2,4,6-Trichlorophenol	0.00909	U	0.00191	0.00909
95-95-4	2,4,5-Trichlorophenol	0.00909	U	0.00773	0.00909
121-14-2	2.4-Dinitrotoluene	0.00909	U	0.00636	0.00909
118-74-1	Hexachlorobenzene	0,00909	U	0.000932	0.00909
87-86-5	Pentachlorophenol	0.0227	U	0.00318	0.0227

V96V

EPA Sample No. KD-SB-2 11ft-12ft Contract: Kokomo Dump / 2010101 / 101 Lab Name: Spectrum Analytical, Inc. Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386202 Lab File ID 86202T.D Sample wt/vol: 500 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/26/11 Level:(low/med) LOW Time: 1319 Date Analyzed: 09/02/11 PercentSolids: 0 decanted: Dilution Factor: 1 Extraction: SEPF Station ID: Method: 8270 TCLP GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: MG/L

TCLP Analysis

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
110-86-1	Pyridine	0.008	on R	0.0042	0.008
106-46-7	1,4-Dichlorobenzene	0.008	U	0.0054	0.008
95-48-7	2-Methylphenol	0.008	U	0.0052	0.008
67-72-1	Hexachloroethane	0.008	U	0.0052	800.0
106-44-5	4-Methylphenol	0.02	U	0.0122	0.02
98-95-3	Nitrobenzene	0.008	U	0.002	800.0
87-68-3	Hexachlorobutadiene	0.008	Ų	0.005	800.0
88-06-2	2,4,6-Trichlorophenol	0.008	ب	0.00168	0.008
95-95-4	2,4,5-Trichlorophenol	0.008	Ý	0.0068	800.0
121-14-2	2,4-Dinitrotoluene	0.008		0.0056	800.0
118-74-1	Hexachlorobenzene	0.008	Ų ,	0.00082	800.0
87-86-5	Pentachlorophenol	0.02	L. V	0.0028	0.02

100m

EPA Sample No. KD-SB-2 11ft-12ftRE1 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 SAS No: SDG No.: 3503862 Lab Code: PEL Case No. Matrix: WATER Lab Sample ID: 350386202RE1 Lab File ID 86202TR.D Sample wt/vol: 475 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 09/07/11 Level:(fow/med) LOW Date Analyzed: 09/07/11 Time: 1658 PercentSolids: 0 decanted: Dilution Factor: 1 Extraction: SEPF Method: 8270 TCLP Station ID: GPC Cleanup : (Y/N) N pH: ID: 0.25 (mm) Column(1): HPMS-5 CONCENTRATION UNITS: MG/L **TCLP Analysis**

CAS NO.	ANALYTE	RESULT	Q	MDL.	RL
110-86-1	Pyridine	0.00842	UIT	0.00442	0.00842
106-46-7	1,4-Dichlorobenzene	0.00842	υ	0.00568	0.00842
95-48-7	2-Methylphenol	0.00842	U	0.00547	0.00842
67-72-1	Hexachloroethane	0.00842	U	0.00547	0.00842
106-44-5	4-Methylphenol	0.021	U	0.0128	0.021
98-95-3	Nitrobenzene	0.00842	U	0.0021	0.00842
37-68-3	Hexachlorobutadiene	0.00842	U	0.00526	0.00842
8-06-2	2,4,6-Trichlorophenol	0.00842	υİ	0.00177	0.00842
95-95-4	2,4,5-Trichlorophenol	0.00842	υ	0.00716	0.00842
21-14-2	2,4-Dinitrotoluene	0.00842	U	0.00589	0.00842
18-74-1	Hexachlorobenzene	0.00842	U	0.000863	0.00842
37-86-5	Pentachlorophenol	0.021	U 🖖	0.00295	0.021

MED

EPA Sample No. KD-SB-6 3ft-4ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab File ID 86210T.D Lab Sample ID: 350386210 Units: ML Sample wt/vol: 500 Date Received: 08/23/11 Concentrated Extract Volume; 1 Date Extracted: 08/26/11 Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1352 PercentSolids: decanted : 0 Dilution Factor: 1 Extraction: SEPF Station ID: Method: 8270 TCLP GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: MG/L TCLP Analysis

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
110-86-1	Pyridine	0.008	IJ	0.0042	0.008
106-46-7	1,4-Dichlorobenzene	0.008	U	0.0054	0.008
95-48-7	2-Methylphenol	0.008	U	0.0052	0.008
67-72-1	Hexachloroethane	0.008	Ü	0.0052	0.008
106-44-5	4-Methylphenol	0.02	U	0.0122	0.02
98-95-3	Nitrobenzene	0.008	U	0.002	0.008
87-68-3	Hexachlorobutadiene	0.008	U	0.005	0.008
88-06-2	2,4,6-Trichlorophenol	0.008	U	0.00168	0.008
95-95-4	2,4,5-Trichlorophenol	0.008	U	0.0068	800.0
121-14-2	2,4-Dinitrotoluene	0.008	U	0.0056	0.008
118-74-1	Hexachlorobenzene	0.008	U	0.00082	0.008
87-86-5	Pentachlorophenol	0.02	U	0.0028	0.02

VDW

Lab Name: Spectrum Analytical, Inc. Contract:	Kokomo Dump / 2010101 / 101	KD-SB-9 3ft-4ft
Lab Code : PEL Case No.	SAS No: SDC	3 No.: 3503862
Matrix: SOIL	Lab Sample ID: 350386211	Lab File ID 86211T.D
Sample wt/vol: 500 Units; ML	Date Received: 08/23/11	
Concentrated Extract Volume: 1	Date Extracted: 08/26/11	
Level:(low/med) LOW	Date Analyzed: 09/02/11	Time: 1426
PercentSolids: 0 decanted:	Dilution Factor: 1	
Extraction: SEPF	Station ID:	Method: 8270 TCLP
GPC Cleanup : (Y/N) N pH:		
Column(1): HPMS-5 ID: 0.25 (mm)	

CONCENTRATION UNITS: MG/L

TCLP Analysis

CAS NO.	ANALYTE	NALYTE RESULT Q		MDL.	RL
110-86-1	Pyridine	0.008	U	0.0042	0.008
106-46-7	1,4-Dichlorobenzene	0.008	U	0.0054	0.008
95-48-7	2-Methylphenol	0.008	U	0.0052	0.008
67-72-1	Hexachloroethane	0.008	U	0.0052	800.0
106-44-5	4-Methylphenol	0.02	U	0.0122	0.02
98-95-3	Nitrobenzene	0.008	U	0.002	0.008
87-68-3	Hexachlorobutadiene	0.008	U	0.005	0.008
88-06-2	2,4,6-Trichlorophenol	0.008	U	0.00168	0.008
95-95-4	2,4,5-Trichlorophenol	0.008	U	0.0068	0.008
121-14-2	2,4-Dinitrotoluene	0.008	U	0.0056	0.008
118-74-1	Hexachlorobenzene	0.008	U	0.00082	0.008
87-86 <i>-</i> 5	Pentachiorophenol	0.02	U	0.0028	0.02

EPA Sample No. KD-DISP-SOIL-01 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Case No. Lab Code: PEL SAS No: SDG No.: 3503862 Lab File ID 86213T.D Matrix: SOIL Lab Sample ID: 350386213 Sample wt/vol: 500 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 1 Date Extracted: 08/26/11 Level:(low/med) LOW Date Analyzed: 09/02/11 Time: 1458 PercentSolids: 0 decanted : Dilution Factor: 1 Extraction: SEPF Station ID: Method: 8270 TCLP GPC Cleanup : (Y/N) N pH: Column(1): HPMS-5 ID: 0.25 (mm)

CONCENTRATION UNITS: MG/L TCLP Analysis

CAS NO.	ANALYTE	RESULT Q		MDL	RL	
110-86-1	Pyridine	0.008	U	0.0042	800.0	
106-46-7	1,4-Dichlorobenzene	0.008	U	0.0054	0.008	
95-48-7	2-Methylphenol	0.008	U	0.0052	0.008	
67-72-1	Hexachloroethane	0.008	U	0.0052	0.008	
106-44-5	4-Methylphenol	0.02	U	0.0122	0.02	
98-95-3	Nitrobenzene	0.008	U	0.002	0.008	
87-68-3	Hexachlorobutadiene	0.008	U	0.005	0.008	
88-06-2	2,4,6-Trichlorophenol	0.008	U	0.00168	0.008	
95-95-4	2,4,5-Trichlorophenol	0.008	U	0.0068	0.008	
121-14-2	2,4-Dinitrotoluene	0.008	U	0.0056	0.008	
118-74-1	Hexachlorobenzene	0.008	U	0.00082	800.0	
87-86-5	Pentachlorophenol	0.02	U	0.0028	0.02	

Form I

080911 1741

1

INORGANIC ANALYSIS DATA SHEET

EPA Sample No.	
KD-SB-1 16ft-16.5ft	

Lab Name:	Spectrum Analy	tical, Inc. Contr	act: Kokomo Dump / 201	10101 / 1012	KD-SB-1 16ft-16.5ft
Lab Code :	PEL	Case No.:	SAS No:	\$	DG No.: 3503862
	OIL		Lab Sample ID: 3	350386201	
Level:(low/me	ed) LOW		Date Received:	8/23/2011	
PercentSolids	s: 95.2		Station ID:		

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	М		MDL	RL
7440-38-2	Arsenic	5.66	-		Р		0.37	0.741
7440-43-9	Cadmium	0.817			Р		0.037	0.37
7440-47-3	Chromium	14.1			Р		0.118	0.37
7439-92-1	Lead	54.2		·····	Р		0.252	0.593
7439-97-6	Mercury	0.0264			CV	***************************************	0.003	0.0161
7782-49-2	Selenium	1.48	U		р		0.296	1.48
7440-22-4	Silver	0.37	U		Р		0.118	0.37

Color After: Artifacts: Comments:	Color Before:	Clarity Before:	Texture :
	Color After :	Clarity After:	Artifacts:
	Comments:		

100em

1

INORGANIC ANALYSIS DATA SHEET

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	M	MDL	RL
7440-39-3	Barium	506			Р	 0.237	0.741

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
0899111741		

Dons

1

INORGANIC ANALYSIS DATA SHEET

					EPA Sample No.
Lab Name:	Spectrum Analytic	al, Inc. Contract:	Kokomo Dump / 2	010101 / 1012	KD-SB-2 11ft-12ft
	PEL	Case No.:	SAS No:		SDG No.: 3503862
Matrix: SO) L	na.	Lab Sample ID:	350386202	
Level:(low/med	l) LOW		Date Received:	8/23/2011	
PercentSolids:	74.4		Station ID:		

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	М		MDL	RL
7440-38-2	Arsenic	0.932	U		Р		0.466	0.932
7440-39-3	Barium	356			Р		0.149	0.466
7440-43-9	Cadmium	60.3			Р	,	0.0466	0.466
7439-97-6	Mercury	0.251			CV		0.0046	0.0248
7782-49-2	Selenium	1.6	J		Р		0.373	1.86
7440-22-4	Silver	14.5			P		0.149	0.466

Color Before:	Clarity Before:	Texture :	
Color After :	Clarity After:	Artifacts:	
Comments:			
080911 1741			

106W

1

INORGANIC ANALYSIS DATA SHEET

						f	EPA Sa	mple No.		
Lab Name:	Spectrum Analytic	cal, Inc. Contract:	Kokomo Dump	/ 2010101	1 / 1012	K	D-SB-2 1	1ft-12ftDL1		
Lab Code :	PEL	Case No.:	SAS No:	*** *** *** * * * * * * * * * * * * * *		SDG No.	350386	2		
Matrix: SC	OIL		Lab Sample II	D: 35038	36202DL	.1				
Level:(low/me	d) LOW		Date Received	d: 8/23/	2011					
PercentSolids			Station ID:							
CONCENTRA	ATION UNITS: N	1G/KG	T				· L	1		-
CAS NO.	ANALYTE		Concentrati	ion	С	Q	M		MDL	RL
7440-47-3	Chromium		4030				Р		2.98	9.32
Color Before:		Clarity Before:		Texture :_		_				
Color After :		Clarity After:		Artifacts:_						
Comments:										

080911 1741

BU

1

Station ID:

INORGANIC ANALYSIS DATA SHEET

EPA Sample No. KD-SB-2 11ft-12ftDL2 Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 1012 Lab Code: PEL Case No.: SAS No: SDG No.: 3503862 Lab Sample ID: 350386202DL2 Level:(low/med) LOW Date Received: 8/23/2011 PercentSolids: 74.4

CONCENTRATION UNITS: MG/KG

SOIL

Matrix:

080911 1741

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL.
7439-92-1	Lead	828			Р	0.634	1.49

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

1

INORGANIC ANALYSIS DATA SHEET

EFA Sample No.	
KD-DRUM-1	

	analytical, Inc.	Contract: Kokomo Dump / 2	010101 / 1012	KD-DRUM-1
Lab Code : PEL	Case No.:	SAS No:	\$	DG No.: 3503862
Matrix: SOIL		Lab Sample ID:	350386203	
Level:(low/med) LOW		Date Received:	8/23/2011	
PercentSolids: 66.5		Station ID:		

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-38-2	Arsenic	2.01			Р	0.65	1.3
7440-43-9	Cadmium	6.66			Р	0.065	0.65
7440-47-3	Chromium	44.2		***************************************	Р	0.208	0.65
7439-97-6	Mercury	0.0922	******		CV	0.0051	0.0277
7782-49-2	Selenium	4.11			Р	0.52	2.6
7440-22-4	Silver	0.65	U		Р	0.208	0.65

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

Wan-

1

INORGANIC ANALYSIS DATA SHEET

						EPA Sample No.
Lab Name:	Spectrum Analytical, Inc.		Contract: Kokomo Dump / 20		010101 / 1012	KD-DRUM-1DL1
Lab Code :	PEL	Case No.:		SAS No:		SDG No.: 3503862
	SOIL			Lab Sample ID:	350386203DL	1
Level:(low/m	ed) LOW			Date Received:	8/23/2011	
PercentSolic	ls: 66.5			Station ID:		

CONCENTRATION UNITS: MG/KG

080911 1741

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-39-3	Barium	14700			p	5.2	16.3

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

YARV

1

INORGANIC ANALYSIS DATA SHEET

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	M	MDL	RL
39-92-1	Lead	2360			Р	2.21	5.2

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

(DEW

1

INORGANIC ANALYSIS DATA SHEET

						EPA Sample No.
Lab Name:	Spectrum Analyti	cal, Inc.	Contract:	Kokomo Dump / 2	010101 / 1012	KD-DRUM-2
Lab Code :	PEL	Case No.:	* . * . * . * . * * * *	SAS No:		SDG No.: 3503862
	OIL	N. Mari		Lab Sample ID:	350386204	
Level:(low/me	ed) LOW			Date Received:	8/23/2011	
PercentSolid	s: 93.1			Station ID:		

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	Concentration C		М	MDL	RL
7440-38-2	Arsenic	57.9			 P	0.286	0.572
7440-39-3	Barium	44.2			Р	0.0915	0.286
7439-92-1	Lead	108			P	 0.194	0.458
7439-97-6	Mercury	0.0191	J		cv	 0.004	0.0214
7782-49-2	Selenium	1.14	U	***	Р	 0.229	1.14
7440-22-4	Silver	2.19			Р	0.0915	0.286

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
080911 1741		

(9N~

1

INORGANIC ANALYSIS DATA SHEET

						E	PA Sample No.
Lab Name:	Spectrum Analyti	cal, Inc.	Contract:	Kokomo Dump / 2	010101 / 1012	К	D-DRUM-2DL1
Lab Code :	PEL	Case No.:		SAS No:		SDG No.: 3	503862
	OIL	*********		Lab Sample ID:	350386204DL	1	
Level:(low/me	ed) LOW			Date Received:	8/23/2011		
PercentSolids				Station ID;			

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-43-9	Cadmium	441			P	 0.143	1.43
7440-47-3	Chromium	792			P	0.458	1.43

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
085911 1741		

(90W

1

INORGANIC ANALYSIS DATA SHEET

						EPA Sample No.
Lab Name:	Spectrum Analytical, Inc.				010101 / 1012	KD-SS-01
Lab Code :	PEL	Case No.:		SAS No:		SDG No.: 3503862
	SOIL			Lab Sample ID:	350386205	
Level:(low/m	ned) LOW			Date Received:	8/23/2011	
PercentSoli	ds: 70.5			Station ID:		

CONCENTRATION UNITS: MG/KG

696911 1741

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-38-2	Arsenic	1.2	U		Р	0.598	1.2
7440-43-9	Cadmium	0.769			Р	0.0598	0.598
7439-97-6	Mercury	0.115	Ì		CV	0.0035	0.0187
7782-49-2	Selenium	2.39	U		Р	0.478	2.39
7440-22-4	Silver	0.294	J		Р	0.191	0.598

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

(96W

4

INORGANIC ANALYSIS DATA SHEET

					EPA Sample No.
Lab Name:	Spectrum Analyt	ical, Inc. Contract	: Kokomo Dump / 2		KD-SS-01DL1
Lab Code :	PEL	Case No.:	SAS No:		SDG No.: 3503862
	SOIL		Lab Sample ID:	350386205DL	.1
Level:(low/n	ned) LOW		Date Received:	8/23/2011	. ,
PercentSoli	ds: 70.5		Station ID:		

CONCENTRATION UNITS: MG/KG

080011 1741

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL.
7440-39-3	Barium	900			P	1.91	5.98
7440-47-3	Chromium	3980			Р	1.91	5.98

Color After: Artifacts:	
Comments:	

MAN

1

INORGANIC ANALYSIS DATA SHEET

						EPA Sample No.
Lab Name:	Spectrum Analyti		Contract:	Kokomo Dump / 2	010101 / 1012	KD-SS-01DL2
Lab Code :	PEL	Case No.:		SAS No:		SDG No.: 3503862
	OIL			Lab Sample ID:	350386205DL:	2
Level:(low/me	ed) LOW			Date Received:	8/23/2011	
PercentSolid	s: 70.5			Station ID:		

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	Μ	MDL	RL
7439-92-1	Lead	16100			P	20.3	47.8

Color Before:	Clarity Before:	Texture :	
Color After :	Clarity After:	Artifacts;	
Comments:			
090911 1741			

V 25VV

1

INORGANIC ANALYSIS DATA SHEET

					EPA Sample No.
Lab Name:	Spectrum Analyti	cal, Inc. Contrac	t: Kokomo Dump / 2	010101 / 1012	KD-SB-2 6ft-8ft
Lab Code :	PEL	Case No.:	SAS No:	S	DG No.: 3503862
	OIL		Lab Sample ID:	350386206	
Level:(low/me	ed) LOW		Date Received:	8/23/2011	
PercentSolids	s: 80		Station ID:		

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-38-2	Arsenic	39.8			Р	0.427	0.854
7440-43-9	Cadmium	21.6			Р	0.0427	0.427
7440-47-3	Chromium	150			Р	0.137	0.427
7439-97-6	Mercury	0.294			CV	0.0026	0.014
7782-49-2	Selenium	1.12	J		Р	0.342	1.71
7440-22-4	Silver	7		***************************************	P	 0.137	0.427

Color Before:	Clarity Before:	Texture :	
Color After :	Clarity After:	Artifacts:	
Comments:			
083911 1741			

Van

1

INORGANIC ANALYSIS DATA SHEET

EPA Sample No.

Lab Name:	Spectrum Ana	alytical, Inc.	Contract: Kokomo Dump	/ 2010101 / 1012	KD-SB-2 6ft-8ftDL1
Lab Code :	PEL	Case No.:	SAS No:	S	DG No.: 3503862
	OIL		Lab Sample II	D: 350386206DL1	
Level:(low/me	ed) LOW		Date Received	8/23/2011	
PercentSolid	s: 80		Station ID:		

CONCENTRATION UNITS: MG/KG

680911 1741

CAS NO.	ANALYTE	Concentration	C	Q	M	MDL	RL
7440-39-3	Barium	632		~~	Р	0.683	2.13
7439-92-1	Lead	1500			P	 1.45	3.42

Color Before:	Clarity Before:	 Texture ;	
Color After :	Clarity After:	 Artifacts:	
Comments:			

1

INORGANIC ANALYSIS DATA SHEET

					EPA Sample No.
Lab Name:	Spectrum Analytical, Inc.		Contract: Kokomo Dump /	2010101 / 1012	KD-SB-3 10ft-12ft
Lab Code :	PEL	Case No.:	SAS No:		SDG No.: 3503862
	SOIL		Lab Sample ID:	350386207	
Level:(low/m	ed) LOW		Date Received;	8/23/2011	
PercentSolid	s: 82		Station (D:		

CONCENTRATION UNITS: MG/KG

080911 1741

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-38-2	Arsenic	23.9		*N	P	0.531	1.06
7440-43-9	Cadmium	23.2	\ \	E	Р	 0.0531	0.531
7440-47-3	Chromium	109		N	P	 0.17	0.531
7439-97-6	Mercury	0.706	,q.	N	CV	0.0069	0.0373
7782-49-2	Selenium	3.85			P	0.425	2.12
7440-22-4	Silver	10.5			Р	 0.17	0.531

Color Before:	Clarity Before:	Texture :	
Color After :	Clarity After:	Artifacts:	
Comments:			
			~~~~

MCY

1

## INORGANIC ANALYSIS DATA SHEET

					_	EPA Sample No.
Lab Name:	Spectrum Analytical, Inc.		Contract: Kokomo Dump / 2		010101 / 1012	KD-SB-3 10ft-12ftDL1
Lab Code :	PEL	Case No.:	·····	SAS No:	SE	OG No.: 3503862
	SOIL	.,		Lab Sample ID:	350386207DL1	
Level:(low/m	ned) LOW			Date Received:	8/23/2011	
PercentSoli	ds: 82			Station ID:		

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-39-3	Barium	485			Р	0.85	2.66
7439-92-1	Lead	1380			Р	1.8	4.25

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
030911 1741		

MRY

1

## INORGANIC ANALYSIS DATA SHEET

				EPA Sample No.
Lab Name:	Spectrum Analyt		act: Kokomo Dump / 2010101	/ 1012 KD-SB-6 3ft-4ft
Lab Code :	PEL	Case No.:	SAS No:	SDG No.: 3503862
	OIL		Lab Sample ID: 35038	6210
Level:(low/me	ed) LOW	-	Date Received: 8/23/	2011
PercentSolid	s: 75.2		Station ID:	

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	м	MDL	RL.
7440-38-2	Arsenic	13.4			Р	 0.578	1.16
7440-39-3	Barium	58.6		***************************************	Р	0.185	0.578
7440-43-9	Cadmium	0.609		***************************************	P	 0.0578	0.578
7440-47-3	Chromíum	20.6			P	0.185	0.578
7439-92-1	Lead	28.6			Р	0.393	0.925
7439-97-6	Mercury	0.282			cv	0.0037	0.0197
7782-49-2	Selenium	2.31	U	***************************************	Р	 0.462	2.31
7440-22-4	Silver	0.578	U		Р	0.185	0.578

Color Before:	Clarity Before:	Texture :	
Color After :	Clarity After:	Artifacts:	
Comments:			
080311 1741			

- WRY

4

### INORGANIC ANALYSIS DATA SHEET

 Lab Name:
 Spectrum Analytical, Inc.
 Contract:
 Kokomo Dump / 2010101 / 1012
 KD-SB-9 3ft-4ft

 Lab Code:
 PEL
 Case No.:
 SAS No:
 SDG No.:
 3503862

 Matrix:
 SOIL
 Lab Sample ID:
 350386211

 Level:(low/med)
 LOW
 Date Received:
 8/23/2011

 PercentSolids:
 74.4
 Station ID:

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	С	Q	Μ		MDL	RL
7440-38-2	Arsenic	8.24			P		0.632	1.26
7440-39-3	Barium	47.9			Р		0.202	0.632
7440-43-9	Cadmium	0.574	J		Р		0.0632	0.632
7440-47-3	Chromium	18.6			Р	······································	0.202	0.632
7439-92-1	Lead	30			Р		0.43	1.01
7439-97-6	Mercury	0.221			CV		0.0046	0.0247
7782-49-2	Selenium	2.53	U		Р		0.505	2.53
7440-22-4	Silver	0.632	U		Р	~	0.202	0.632

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

VXV

080911 1741

1

## INORGANIC ANALYSIS DATA SHEET

						EPA Sample No	
_ab Name:	Spectrum Analy	tical, Inc.	Contract:	Kokomo Dump / 2	010101 / 1012	KD-SB-7 4ft-6ft	
_ab Code :	PEL	Case No.;		SAS No:		SDG No.: 3503862	
	SOIL			Lab Sample ID:	350386212		
_evel:(low/m	ed) LOW			Date Received:	8/23/2011		
PercentSolic	ls: 76.4			Station ID:			

CONCENTRATION UNITS: MG/KG

CAS NO.	ANALYTE	Concentration	C	Q	М	MDL	RL
7440-38-2	Arsenic	12			Р	0.528	1.06
7440-39-3	Barium	97.4			р	0.169	0.528
7440-43-9	Cadmium	0.361	J		Р	0.0528	0.528
7440-47-3	Chromium	25			Р	0.169	0.528
7439-92-1	Lead	38.6			Р	 0.359	0.844
7439-97-6	Mercury	0.0603			CV	 0.0038	0.0205
7782-49-2	Selenium	1	J	~~~~~~	P	0.422	2.11
7440-22-4	Silver	0.528	U		Р	0.169	0.528

Color Before:	Clarity Before:	Texture :	_
Color After :	Clarity After:	Artifacts:	_
Comments:			
			***************************************
			******

NRY

1

## INORGANIC ANALYSIS DATA SHEET

EPA Sample No.

Lab Name: Spectrum Analytical, Inc.	Contract: Kokomo Dump / 2	010101 / 1012 KD-IDW-WATER-01
Lab Code : PEL Case No.:	SAS No:	SDG No.: 3503862
Matrix: WATER	Lab Sample ID:	350386214
Level:(low/med) LOW	Date Received:	8/23/2011
PercentSolids: 0	Station ID:	

CONCENTRATION UNITS: UG/L.

030911 1741

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-38-2	Arsenic	21.3		***************************************	Р	 3.31	10
7440-39-3	Barium	401			Р	0.22	10
7440-43-9	Cadmium	6.43			Р	0.72	5
7440-47-3	Chromium	146	-	***	Р	0.43	10
7439-92-1	Lead	347			P	3.7	15
7439-97-6	Mercury	0.83		~~~	CV	0.037	0.2
7782-49-2	Selenium	20	U		P	 4.1	20
7440-22-4	Silver	10	U		P	 0.52	10

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
WH		

VARV

1

## INORGANIC ANALYSIS DATA SHEET

Lab Name:					<u></u>		imple No.	<del></del> 1	
Lab Hallie.	Spectrum Ana	alytical, Inc. Contract:	Kokomo Dump / 2	010101 / 1012	L	KD-SB-1	16ft-16.5ft		
Lab Code :	PEL	Case No.:	SAS No:		SDG No	o.: 350386	52		
Matrix: S	SOIL		Lab Sample ID:						
	ed) LOW		Date Received:						
				0/23/2011					
PercentSolid	ls: 0,,,,		Station ID:						
CONCENTR	RATION UNITS:	MG/L				<u>TC</u>	LP Analysis	<u>s</u>	
CAS NO.	ANALYTE		Concentration	С	Q	M		MDL	RL.
7440-38-2	Arsenic		0.1	U		P		0.0331	0.1
7440-39-3	Barium		3.68			P			0.1
440-43-9	Cadmium		0.00886	J		Р	<u> </u>		0.05
7440-47-3	Chromium		0.011	- J		P			0.1
7439-92-1	Lead		0.0877	J		Р			0.15
7439-97-6	Mercury		0.002	U		· <del> </del> ·····		<del></del>	0.002
7782-49-2	Selenium		0.2			P			0.2
7440-22-4	Silver								0.1
7440-39-3 7440-43-9 7440-47-3 7439-92-1 7439-97-6 7782-49-2 7440-22-4	Cadmium Chromium Lead Mercury Selenium		0.00886 0.011 0.0877 0.002	J		P P CV		0.0022 0.0072 0.0043 0.037 0.0004 0.041 0.0052	

Artifacts:_____

Comments:

Clarity After:

 Color Before:
 ______
 Texture :______

Color After :

1

## INORGANIC ANALYSIS DATA SHEET

EPA Sample No.

							LI A Gample No.
Lab Name:	Spectrum Ana	lytical, Inc.	Contract:	Kokomo Dump / 2	2010101 / 1012		KD-SB-2 11ft-12ft
Lab Code ;	PEL	Case No.:		SAS No:		SDG No.	: 3503862
	OIL			Lab Sample ID:	350386202		
Level:(low/me	d) LOW			Date Received:	8/23/2011		
PercentSolids	: 0			Station ID:			

CONCENTRATION UNITS: MG/L

080911 1742

# **TCLP Analysis**

CAS NO.	ANALYTE	Concentration	С	Q	M	MDL	RL
7440-38-2	Arsenic	0.1	U		P	0.0331	0.1
7440-39-3	Barium	0.593			Р	0.0022	0.1
7440-43-9	Cadmium	0.05	U	******	р	 0.0072	0.05
7440-47-3	Chromium	0.0574	J		P	0.0043	0.1
7439-92-1	Lead	0.0507			P	0.037	0.15
7439-97-6	Mercury	0.002	Ü		CV	0.0004	0.002
7782-49-2	Selenium	0.2	Ū		P	0.041	0.2
7440-22-4	Silver	0.00759	<u> </u>		P	0.0052	0.1

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

NOW

1

## INORGANIC ANALYSIS DATA SHEET

							EPA Sample No.	
Lab Name:	Spectrum Analy	tical, Inc.	Contract:	Kokomo Dump / 2	010101 / 1012		KD-DRUM-1	
Lab Code :	PEL	Case No.:	***************************************	SAS No:		SDG No.:	3503862	
Matrix:	SOIL	,		Lab Sample ID:	350386203			
Level:(low/r	med) LOW			Date Received:	8/23/2011			
PercentSol	ids: 0			Station ID:				

CONCENTRATION UNITS: MG/L

# TCLP Analysis

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL
7440-38-2	Arsenic	0.1	Ų		P	0.0331	0.1
7440-39-3	Barium	6.6			Р	0.0022	0.1
7440-43-9	Cadmium	0.0231	l j	•	P	0,0072	0.05
7440-47-3	Chromium	0.00815			P	0.0043	0.1
7439-92-1	Lead	1.18			P	0.037	0.15
7439-97-6	Mercury	0,002	U		cv	0.0004	0.002
7782-49-2	Selenium	0.2	1 0		P	0.041	0.002
7440-22-4	Silver	0.1	U	***************************************	P	0.0052	0.2

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
***************************************		

VON

680911 1742

1

## INORGANIC ANALYSIS DATA SHEET

					EPA Sample No.
Lab Name:	Spectrum Analyt	ical, Inc. Contract:	Kokomo Dump / 20	)10101 / 1012	KD-DRUM-2
Lab Code :	PEL	Case No.:	SAS No:		SDG No.: 3503862
	SOIL		Lab Sample ID:	350386204	1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Level:(low/me	ed) LOW		Date Received:	8/23/2011	
PercentSolid	s: 0		Station ID:		

## CONCENTRATION UNITS: MG/L

CAS NO.	ANALYTE	Concentration	С	Q	M	 MDL	RL
7440-38-2	Arsenic	0.1	U		Р	 0.0331	0.1
7440-39-3	Barium	0.401			Р	0.0022	0.1
7440-43-9	Cadmium	0.836	1		Р	0.0072	0.05
7440-47-3	Chromium	0.0168	J		Р	0.0043	0.1
7439-92-1	Lead	0.15	U		Р	0.037	0.15
7439-97-6	Mercury	0.002	U		CV	 0.0004	0.002
7782-49-2	Selenium	0.2	U		P	0.041	0.2
7440-22-4	Silver	0.00747	J	***************************************	Р	 0.0052	0.1

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
		······
083911 1742		

1

# INORGANIC ANALYSIS DATA SHEET

						EPA Sample No.
Lab Name:	Spectrum Analytical, Inc.		Contract:	Kokomo Dump / 2010101 / 1012		KD-SS-01
Lab Code :	PEL	Case No.:		SAS No:		SDG No.: 3503862
	OIL			Lab Sample ID;	350386205	
Level:(low/me	ed) LOW			Date Received:	8/23/2011	***************************************
PercentSolids	s: 0			Station ID:		

## CONCENTRATION UNITS: MG/L

# TCLP Analysis

CAS NO.	ANALYTE	Concentration	C	Q	М	MDL	RL.
7440-38-2	Arsenic	0.1	U		Р	0.0331	0.1
7440-39-3	Barium	3.33			Р	0.0022	0.1
7440-43-9	Cadmium	0.0126	J	****	P	0.0072	0.05
7440-47-3	Chromium	0.0282	J		Р	0.0043	0.1
7439-92-1	Lead	8.35	<b>†</b>		Р	 0.037	0.15
7439-97-6	Mercury	0.002	U		cv	0.0004	0.002
7782-49-2	Selenium	0.2	Ū		Р	 0.041	0.2
7440-22-4	Silver	0.1	U		Р	 0.0052	0.1

Color Before:	Clarity Before:	Texture:
Color After :	Clarity After:	Artifacts:
Comments:		
080911 1742		

( EN)

1

### INORGANIC ANALYSIS DATA SHEET

							EPA Sample No.	
Lab Name:	Spectrum Analytical, Inc.		Contract: Kokomo Dump / 20101		010101 / 1012		KD-SB-2 6ft-8ft	
Lab Code :	PEL	Case No.:		SAS No:	s	DG No.:	3503862	
	OIL	www.to.		Lab Sample ID:	350386206			
Level:(low/me	ed) LOW			Date Received:	8/23/2011			
PercentSolid	s: 0			Station ID:				

## CONCENTRATION UNITS: MG/L

## TCLP Analysis

CAS NO.	ANALYTE	Concentration	С	Q	M		MDL	RL.
7440-38-2	Arsenic	0.1	U		P	·	0.0331	0.1
7440-39-3	Barium	0.802			Р	•	0.0022	0.1
7440-43-9	Cadmium	0.0626	1	***************************************	Р		0.0072	0.05
7440-47-3	Chromium	0.0106	J		Р		0.0043	0.1
7439-92-1	Lead	2.84			Р		0.037	0.15
7439-97-6	Mercury	0.002	U	·····	cv		0.0004	0.002
7782-49-2	Selenium	0.2	U		P		0.041	0.2
7440-22-4	Silver	0.1	U		Р		0.0052	0.1

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

V96V

080911 1742

1

## INORGANIC ANALYSIS DATA SHEET

						EPA Sample No.	
Lab Name:	Spectrum Analytical, Inc.		Contract: Kokomo Dump / 20		010101 / 1012	KD-SB-3 10ft-12ft	
Lab Code :	PEL	Case No.:		SAS No:	***************************************	SDG No.: 3503862	
	SOIL	,		Lab Sample ID:	350386207		
Level:(low/m	ed) LOW			Date Received:	8/23/2011		
PercentSolid	is: 0			Station ID;			

CONCENTRATION UNITS: MG/L

080911 1742

CAS NO.	ANALYTE	Concentration	0	Q	М	MDL	RL.
7440-38-2	Arsenic	0.1	U		P	0.0331	0.1
7440-39-3	Barium	0.898			Р	 0.0022	0.1
7440-43-9	Cadmium	0.03	J		P	0,0072	0.05
7440-47-3	Chromium	0.0136	J		Р	0.0043	0.1
7439-92-1	Lead	0.138	J		Р	 0.037	0.15
7439-97-6	Mercury	0.002	U		CV	0.0004	0.002
7782-49-2	Selenium	0.2	Ū	***	Р	 0.041	0.2
7440-22-4	Silver	0.1	U		Р	0.0052	0.1

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

1

## INORGANIC ANALYSIS DATA SHEET

					EPA Sample No.
Lab Name:	Spectrum Analytical, I	nc. Contract:	Kokomo Dump / 2	010101 / 1012	KD-SB-6 3ft-4ft
Lab Code :	PEL Cas	se No.:	SAS No:	S	DG No.: 3503862
	OIL		Lab Sample ID:	350386210	
Level:(low/me	d) LOW		Date Received:	8/23/2011	
PercentSolids	s: 0 ₁		Station ID:		

### CONCENTRATION UNITS: MG/L

# TCLP Analysis

CAS NO.	ANALYTE	Concentration	С	Q	М		MDL	RL
7440-38-2	Arsenic	0.1	U		Р		0.0331	0.1
7440-39-3	Barium	0.746			Р		0.0022	0.1
7440-43-9	Cadmium	0.05	U	***************************************	Р		0.0072	0.05
7440-47-3	Chromium	0.0111	J		Р		0.0043	0.1
7439-92-1	Lead	0.0712	J		P		0.037	0.15
7439-97-6	Mercury	0.002	U	***************************************	CV	<del></del>	0,0004	0.002
7782-49-2	Selenium	0.2	T U		P		0.041	0.2
7440-22-4	Silver	0.1	Ū	***************************************	P	<del></del>	0.0052	0.1

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		

Vo~ K

1

## INORGANIC ANALYSIS DATA SHEET

						EPA Sample No.
Lab Name:	Spectrum Analyt	ical, Inc. Contract:	Kokomo Dump / 2	010101 / 1012		KD-SB-9 3ft-4ft
Lab Code :	PEL	Case No.:	SAS No:		SDG No.:	3503862
	OIL		Lab Sample ID:	350386211		
Level:(low/me	ed) LOW		Date Received:	8/23/2011		
PercentSolids	s: 0		Station ID:			

## CONCENTRATION UNITS: MG/L

CAS NO.	ANALYTE	Concentration	O	Q	M	MDL	RL
7440-38-2	Arsenic	0.1	U		Р	0.0331	0.1
7440-39-3	Barium	0.0162	J		Р	0.0022	0.1
7440-43-9	Cadmium	0.05	U		Р	0.0072	0.05
7440-47-3	Chromium	0.1	U		Р	0.0043	0.1
7439-92-1	Lead	0.15	U		Р	 0.037	0.15
7439-97-6	Mercury	0.002	U		CV	0,0004	0.002
7782-49-2	Selenium	0.2	T U		Р	 0.041	0.2
7440-22-4	Silver	0.00982	J		Р	0.0052	0.1

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
080911 1742		

## INORGANIC ANALYSIS DATA SHEET

			EPA Sample No.
Lab Name:	Spectrum Analytical, Inc.	Contract: Kokomo Dump / 2010101 /	1012 KD-SB-7 4ft-6ft
Lab Code :	PEL Case No.:	SAS No:	SDG No.: 3503862
	OIL	Lab Sample ID: 350386	212
Level:(low/me	ed) LOW	Date Received: 8/23/20	911
PercentSolid	s: 0	Station ID:	

CONCENTRATION UNITS: MG/L

G80911 1742

CAS NO.	ANALYTE	Concentration	С	Q	М		MDL	RL.
7440-38-2	Arsenic	0.1	U		Р		0.0331	0.1
7440-39-3	Barium	0.493			P		0.0022	0.1
7440-43-9	Cadmium	0.00756	J		Р		0.0072	0.05
7440-47-3	Chromium	0.1	U	*****	Р		0.0043	0.1
7439-92-1	Lead	0.0485	J		Р		0.037	0.15
7439-97-6	Mercury	0.002	U		CV		0.0004	0.002
7782-49-2	Selenium	0.2	U		Р		0.041	0.2
7440-22-4	Silver	0.1	U		Р	·····	0.0052	0.1

Color Before:	Clarity Before:	Texture :	_
Color After :	Clarity After:	Artifacts:	_
Comments:			
		***************************************	

## INORGANIC ANALYSIS DATA SHEET

EPA Sample No.

Lab Name: Spectrum An	ab Code : PEL Case No.: atrix: SOIL evel:(low/med) LOW	act: Kokomo Dump / 2010101	/ 1012 KD-DISP-SOIL-01
		SAS No:	SDG No.: 3503862
	,	Lab Sample ID: 35038	6213
		Date Received: 8/23/2	2011
PercentSolids: 0		Station ID:	

CONCENTRATION UNITS: MG/L

CAS NO.	ANALYTE	Concentration	С	Q	М	MDL	RL.
7440-38-2	Arsenic	0.1	U		Р	 0.0331	0.1
7440-39-3	Barium	1.05			Р	 0.0022	0.1
7440-43-9	Cadmium	0.05	U		Р	0.0072	0.05
7440-47-3	Chromium	0.0097	J		Р	 0.0043	0.1
7439-92-1	Lead	0.0556	J	···	Р	 0.037	0.15
7439-97-6	Mercury	0.002	U		CV	 0.0004	0.002
7782-49-2	Selenium	0.2	U		Р	 0.041	0.2
7440-22-4	Silver	0.1	U		Р	0.0052	0.1

Color Before:	Clarity Before:	Texture :
Color After :	Clarity After:	Artifacts:
Comments:		
080911 1742		

EPA Sample No. KD-SB-1 16ft-16.5ft Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 Lab Code : PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386201 Lab File ID 86201.D Sample wt/vol: 25.65 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 10 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/31/11 Time: 0857 95.2 decanted : PercentSolids: Dilution Factor: 1 Extraction: SONC Station ID: Method: 8082 GPC Cleanup : ( Y/N ) N pH: Column(1): STX-CLP1 ID: 0.32 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
12674-11-2	Aroclor-1016	24	U	11	24
11096-82-5	Aroclor-1260	24	U	5	24
11104-28-2	Aroclor-1221	24	U	9.8	24
11141-16-5	Aroclor-1232	24	U	16	24
53469-21-9	Aroclor-1242	24	U	9	24
12672-29-6	Aroclor-1248	24	U	9	24
11097-69-1	Aroclor-1254	280		7.8	24

Gen

EPA Sample No. Lab Name: Spectrum Analytical, Inc. KD-SB-2 11ft-12ft Contract: Kokomo Dump / 2010101 / 101 Lab Code : PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386202 Lab File ID 86202.D Sample wt/vol: 25.7 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 10 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/31/11 Time: 0912 PercentSolids: 74.4 decanted : Dilution Factor: 1 Extraction: SONC Station ID: Method: 8082 GPC Cleanup : ( Y/N ) N pH: Column(1): STX-CLP1 ID: 0.32 (mm)

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
12674-11-2	Aroclor-1016	31	U	14	31
11096-82-5	Aroclor-1260	31	U	6.4	31
11104-28-2	Aroclor-1221	31	U	12	31
11141-16-5	Aroclor-1232	31	U	21	31
53469-21-9	Aroclor-1242	31	U	12	31
12672-29-6	Aroclor-1248	31	U	12	31
11097-69-1	Aroclor-1254	31	U	9.9	31

MEN

CONCENTRATION UNITS: UG/KG

EPA Sample No. Lab Name: Spectrum Analytical, Inc. KD-SB-6 3ft-4ft Contract: Kokomo Dump / 2010101 / 101 Lab Code : PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab File ID 86210D10.D Lab Sample ID: 350386210 Sample wt/vol: 25.21 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 10 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/31/11 Time: 1057 75.2 decanted : PercentSolids: Dilution Factor: 10 Extraction: SONC Station ID: Method: 8082 GPC Cleanup : ( Y/N ) N pH: Column(1): STX-CLP1 ID: 0.32 (mm)

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
12674-11-2	Aroclor-1016	320	U	140	320	
11096-82-5	Aroclor-1260	320	Ü	64	320	
11104-28-2	Aroclor-1221	320	U	130	320	
11141-16-5	Aroclor-1232	320	U	210	320	
53469-21-9	Aroclor-1242	320	U	120	320	
12672-29-6	Aroclor-1248	5200		120	320	
11097-69-1	Aroclor-1254	1500		100	320	

ABM

CONCENTRATION UNITS: UG/KG

EPA Sample No. Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 KD-SB-9 3ft-4ft Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Lab Sample ID: 350386211 Lab File ID 86211.D Sample wt/vol: 25.25 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 10 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/31/11 Time: 0942 PercentSolids: 74.4 decanted: Dilution Factor: 1 Extraction: SONC Station ID: Method: 8082 GPC Cleanup : ( Y/N ) pH: Column(1): STX-CLP1 ID: 0.32 (mm) CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
12674-11-2	Aroclor-1016	32	U	14	32
11096-82-5	Aroclor-1260	32	U	6.5	32
11104-28-2	Aroclor-1221	32	U	13	32
11141-16-5	Aroclor-1232	32	Ú	21	32
53469-21-9	Aroclor-1242	32	U	12	32
12672-29-6	Aroclor-1248	3400	E C	12	32
11097-69-1	Aroclor-1254	980	E R	10	32

NEV

EPA Sample No. Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 KD-SB-9 3ft-4ftDL1 Lab Code : PEL Case No. SAS No: SDG No.: 3503862 Matrix: SOIL Sample wt/vol: 25.25 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 10 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/31/11 Time: 1112 74.4 decanted : PercentSolids: Dilution Factor: 5 Extraction: SONC Station ID: Method: 8082 GPC Cleanup : ( Y/N ) N pH: Column(1): STX-CLP1 ID: 0.32 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
12674-11-2	Aroclor-1016	160	n S	69	160
11096-82-5	Aroclor-1260	160		32	160
11104-28-2	Aroclor-1221	160	J. I	64	160
11141-16-5	Aroclor-1232	160	I I	110	160
53469-21-9	Aroclor-1242	160	I 🗸	58	160
12672-29-6	Aroclor-1248	3700	<b>.</b> v	58	160
11097-69-1	Aroclor-1254	1000		50	160

(Sen

EPA Sample No. Lab Name: Spectrum Analytical, Inc. Contract: Kokomo Dump / 2010101 / 101 KD-DISP-SOIL-01 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 SOIL Matrix: Sample wt/vol: 25.37 Units: G Date Received: 08/23/11 Concentrated Extract Volume: 10 Date Extracted: 08/25/11 Level:(low/med) LOW Date Analyzed: 08/31/11 Time: 1012 90.1 decanted : PercentSolids: Dilution Factor: 1 Extraction: SONC Station ID: Method: 8082 GPC Cleanup : ( Y/N ) N pH: Column(1): STX-CLP1 ID: 0.32 (mm)

CONCENTRATION UNITS: UG/KG

CAS NO.	ANALYTE	RESULT	Q	MDL	RL	
12674-11-2	Aroclor-1016	26	Ü	11	26	***********
11096-82-5	Aroclor-1260	26	Ü	5.3	26	
11104-28-2	Aroctor-1221	26	U	10	26	
11141-16-5	Aroclor-1232	26	U	18	26	
53469-21-9	Aroclor-1242	26	Ü	9.6	26	
12672-29-6	Aroclor-1248	210	-	9.6	26	
11097-69-1	Aroclor-1254	91		8.3	26	

Com

EPA Sample No. Lab Name: Spectrum Analytical, Inc. KD-IDW-WATER-01 Contract: Kokomo Dump / 2010101 / 101 Lab Code: PEL Case No. SAS No: SDG No.: 3503862 Matrix: WATER Lab Sample ID: 350386214 Lab File ID 86214.D Sample wt/vol: 980 Units: ML Date Received: 08/23/11 Concentrated Extract Volume: 10 Date Extracted: 08/24/11 Level:(low/med) LOW Date Analyzed: 08/29/11 Time: 1615 PercentSolids: 0 decanted : Dilution Factor: 1 Extraction: SEPF Station ID: Method: 8082 GPC Cleanup : ( Y/N ) N pH: Column(1): STX-CLP1 ID: 0.32 (mm)

CAS NO.	ANALYTE	RESULT	Q	MDL	RL
12674-11-2	Aroclor-1016	0.51	U	0.37	0.51
11096-82-5	Arocfor-1260	0.51	Ü	0.26	0.51
11104-28-2	Aroclor-1221	0.51	U	0.44	0.51
11141-16-5	Aroclor-1232	0.51	U	0.2	0.51
53469-21-9	Arocior-1242	0.51	U	0.32	0.51
12672-29-6	Aroclor-1248	1.2		0.13	0.51
11097-69-1	Aroclor-1254	0.34	J	0.12	0.51

CON

CONCENTRATION UNITS: UG/L